إمتحانات نهاية الفصل للعام 2017-2018 السنة الثالثة الفصل الخامس الدفعة ICT2015/2016 المقرر: نظرية المعلومات

التاريخ: 8 /2018/1 الزمن 3 ساعات

جامعة العلوم والتقانة كلية علوم الحاسوب وتقانة المعلومات بكلاريوس تكنولوجيا المعلومات و الإتصالات

الرقم	الإسم
سيئلة	<u>أجب عن جميع الأ</u> *ورقة الإمتحان تشتمل
	<u>*ورقة الإمتحان تشتمل</u>
Question One (10 Marks)	
Put (T) in front of correct answer and (I	F) in front of incorrect one
() 1. Events A and B are called independent	at if $P(A \cap B) = P(A) \cdot P(B)$
(\dots) 2. I $(E) = 1$ if $P(E) = 1$	
() 3. One bit equal 0.301 hartly	
(\dots) 4. H $(X Y)$ is greater than entropy of X	
()5. Huffman code is optimum but not un	ique
(\dots) 6. H $(X Y)$ equal Entropy of X if and on	ly if X and Y are independent.
()7. Optimum code is one with maximum	average codeword length not exceed H(X)
()8. The codeword length of a prefix-free	code lower bounded by the entropy
(\ldots) 9. $H(X,Y)$ less than $H(Y,X)$	
()10. For binary code with q symbols and	word length 11,12,lq, Kraft inequality equation becomes
$\sum_{i=1}^q 2^{-li} > 1$	
Question Two (10 Marks)	
Draw a circle around the letter of correc	et answer_
1. In experiment of flip a coin twice, A≡ outo	comes is head in first flip and $B \equiv$ outcomes is Tail in
second flip. Amount of information in $A \cap$	B is
a) 0.25 bit	b) 0.5 bit
c) 1 bit	d) 2 bits
2. For a prefix-free code:	
(a) $H(S) \leq \overline{L}$ (b) $H(S) \geq \overline{L}$	(c) $H(S) \neq \overline{L}$ (d) $H(S) = \overline{L}$
3. One hartly equalbits	
(a) 3.32 (b) 0.301	(c) 4.32 (d) 2.56
4. If X and Y are independent events the Mu	tual Information of X and Y is
a) H(X)	b) H(X Y)
c) $H(Y X)$	d) Zero
5. Mutual Information is :	
e) $H(X)-H(X Y)$	f) $H(X)+H(X Y)$
g) $H(X)-H(Y X)$	h) $H(X)*H(X Y)$

6.	W	hic	h of the	e followir	ng is incor	rect					
	a)	Н	(X,Y)=	=H(X)+H	(Y X)		b) Ι(Σ	X;Y)=H(X)	H(X Y)		
	c)	Н	(Y X)=	H(X,Y)-	H(X)		d) I(2	d) $I(X;Y)=H(X)+H(Y)-H(X,Y)$			
7.	W	hic	h of the	e followir	ng is true						
	a) $H(A B) \ge H(A)$ b) $H(A B) \le H(A)$										
	c)	Н	(A,B)	H(B,A)			d) H(A)≥H(B,A	()		
8.	W	hic	h of the	e followir	ng sequenc	ces of int	egers coul	d be the co	deword le	engths for	a binary prefix
	co	de ((or in c	other word	ds satisfy	Kraft's in	equality)?				
		(a)	1, 2, 2	2, 3	(b) 1, 2,	3, 3	(c) 1, 2, 2	, 2 (d) 1	1, 2, 2, 3		
9.	W	hic	h of the	e followir	ng sets of	codeword	d could be	the Huffm	an code fo	or some 4	symbol source
	alp	oha	bet?								
		(a	01, 1	0, 00, 11	1	(b)	0, 10, 110	, 111			
		(c	2) 1, 01	, 10, 001		(d)	0, 110, 111	1, 101			
10	ı if	ЦО	Y)_ 5 h	artlye th	an tha agu	ijvolent v	alue in hai	tlave ic			
10	. 11		A)= 3 II .) 16.6	Ţ.	(b) 4.301	iivaiciit v	(c) 5	, and the second	none of th	e ahove	
Owen	tio:	` '	•		•		(C) 3	(u)	none or u	ic above	
				(15 Ma		oles whic	h respectiv	ve sets of p	ossible ou	itcomes X	$K = \{1, 2, 3, 4\}$ and
							Y) and by	-			
				P (2	X,Y)	1	2	X 3	4	P(Y)	
						I	<u> </u>	•		P(Y)	
					0	?	0.03	0	0	1 /	_
				Y	1	? 0.34	0.03	0 0.16	+	0.03	
				Y	1 2		?	0	0 0 ?	0.03	- - - -
				Y	1	0.34	?	0 0.16	0	0.03	
		1.	. Mako		1 2 P(X)	0.34	?	0 0.16 0.04 ?	0 0 ?	0.03	
		1.	. Mako		1 2 P(X)	0.34	? 0 0.33	0 0.16 0.04 ?	0 0 ?	0.03	
		1.	. Mako		1 2 P(X)	0.34	? 0 0.33	0 0.16 0.04 ?	0 0 ?	0.03	
		1.	. Mako		1 2 P(X)	0.34	? 0 0.33	0 0.16 0.04 ?	0 0 ?	0.03	
		1.	. Mako		1 2 P(X)	0.34	? 0 0.33	0 0.16 0.04 ?	0 0 ?	0.03	
				e a copy o	1 2 P(X)	0.34 0 ?	? 0 0.33	0 0.16 0.04 ?	0 0 ?	0.03	
				e a copy o	1 2 P(X)	0.34 0 ?	0 0.33 he missing	0 0.16 0.04 ?	0 0 ?	0.03	
				e a copy o	1 2 P(X)	0.34 0 ?	0 0.33 he missing	0 0.16 0.04 ?	0 0 ?	0.03	
				e a copy o	1 2 P(X)	0.34 0 ?	0 0.33 he missing	0 0.16 0.04 ?	0 0 ?	0.03	
				e a copy o	1 2 P(X)	0.34 0 ?	0 0.33 he missing	0 0.16 0.04 ?	0 0 ?	0.03	

3. Calculate the marginal entropy of X in hartlys?
4. Calculate the Joint entropy of X and Y H(X Y) in Hartlys?
5. Calculate the Conditional Entropy H (X Y) in bits?
B. Suppose X can take K values. Show that the entropy maximized when X is uniformly distributed on
these K values and in this case $H(X) = \log K$

Question 4: (15 Marks)

A. Fil	l the gaps using	the following	ng words	(5 Marks)			
En	tropy, Joint En	tropy, Con	ditional pro	bability, Co	nditional En	tropy, Mutu	al Information
	1		is uncertain	inty of X that	t another rand	om variable	Y are Known.
	2		is a measu	ire of the am	ount of inforn	nation that on	e random variable
	contains ab	out another	random vari	able			
	3		that one e	vent occurs g	given that ano	ther event occ	curs
	4		is a measu	ire of uncerta	inty of rando	m variable	
	5		is uncertain	inty of two ra	andom variabl	les.	
2. Let X r	andom variable	with the fol	lowing proba	ability mass f	function: (6 M	(arks)	
	X	1	2	3	4	5	
	P(x)	0.3	0.1	0.2	0.25	0.15	
b. Co	ompute the seco	nd Extensio	n Entropy of	X in bits? (4	Marks)		
••••••							

Question 5 (20 Marks)

The following codes are given:

Symbol Si	Probabilities	Code 1	Code 2	Code 3	Code 4
S1	0.30	00	0	000	0
S2	0.25	01	01	010	10
S3	0.15	00	11	101	110
S4	0.12	11	0111	110	1110
S5	0.10	10	111	001	11110
S6	0.08	111	01111	111	11111

<u>Part 1:</u> (10 Marks)	
a) Which of the given codes is/are singular and v	why?
b) Which of the given codes is/are Uniquely Dec	
b) which of the given codes is/are orinquely bee	oddole and wify:
c) Does code 3 is efficient Code and why?	
<u>Part 2:</u>	(10 Marks)
For S1, S2, \dots , S6 in the above table do the for	ollowing:
a) Derive binary code using Huffman coding?	
b) Does the above Huffman Code is optimal pr	refix-free code? (5 Marks)