
 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 1 of 16

Basic Concepts

Contents of Lecture:
 Architecture & Organization
 Introduction to Assembly Language
 Virtual Machine Concept
 Data Representation
 Boolean Expressions

References for course:

 KIP R. IRVINE, Assembly Language for x86 Processors, 7th Edition
 William Stallings, Computer Organization and Architecture Designing For

Performance, 9th Edition

Organization and Architecture:
 Architecture is those attributes visible to the programmer

 Instruction set, number of bits used for data representation, I/O
mechanisms, addressing techniques.

 Organization is how features are implemented

 Control signals, interfaces, and techniques for addressing memory.

 All Intel x86 family share the same basic architecture
 The IBM System/370 family share the same basic architecture
 This gives code compatibility
 Organization differs between different versions

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 2 of 16

Computer Components:-

1) A processor to interpret and execute programs.
2) A memory to store both data and programs.
3) A mechanism for transferring data to and from the outside world.

Figure (1) shows computer components and their interrelationships

Figure (2) The computer level Hierarchy

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 3 of 16

 Level 6: The User Level
 Program execution and user interface level.

 Level 5: High-Level Language Level

 The level with which we interact when we write programs in languages such
as C, Pascal, Lisp, and Java.

 Level 4: Assembly Language Level

 Acts upon assembly language produced from Level 5, as well as instructions
programmed directly at this level.

 Level 3: System Software Level

 Controls executing processes on the system.
 Protects system resources.
 Assembly language instructions often pass through Level 3 without

modification.

 Level 2: Machine Level

 Also known as the Instruction Set Architecture (ISA) Level.
 Consists of instructions that are particular to the architecture of the machine.
 Programs written in machine language need no compilers, interpreters, or

assemblers.

 Level 1: Control Level

 A control unit decodes and executes instructions and moves data through the
system.

 Control units can be microprogrammed or hardwired.
 A microprogram is a program written in a low-level language that is

implemented by the hardware.
 Hardwired control units consist of hardware that directly executes machine

instructions.

 Level 0: Digital Logic Level

 This level is where we find digital circuits (the chips).
 Digital circuits consist of gates and wires.
 These components implement the mathematical logic of all other levels.

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 4 of 16

Introduction to Assembly Language:
 Assembly language is the oldest programming language, and of all languages, bears

the closest resemblance to native machine language.

 Assembly language is a low-level programming language for a computer.
 It provides direct access to computer hardware, requiring you to understand much

about your computer’s architecture and operating system.

Questions You Might Ask:
 What background should I have?
 Before learning Assembly language, you should have programmed in at least one

structured high-level language, such as Java, C, or C++.
 You should know how to use IF statements, arrays, and functions to solve

programming problems.

 What hardware and software do I need?
 Need a computer that runs a 32-bit or 64-bit version of Microsoft Windows, along

with one of the recent versions of Microsoft Visual Studio.

 What types of programs will I create?
 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit

versions of Microsoft Windows. They are usually easier to write and understand
than real-mode programs.

 64-Bit Mode: 64-bit programs run under all 64-bit versions of Microsoft
Windows.

 16-Bit Real-Address Mode: 16-bit programs run under 32-bit versions of
Windows and on embedded systems.

 How does assembly language relate to machine language?
 Machine language is a numeric language specifically understood by a computer’s

processor (the CPU). All x86 processors understand a common machine language.

 Assembly language consists of statements written with short mnemonics such as
ADD, MOV, SUB, and CALL.

 Assembly language has a one-to-one relationship with machine language: Each
assembly language instruction corresponds to a single machine-language
instruction.

 How do C++ and Java relate to assembly language?
 High-level languages such as C, C++, and Java have a one-to-many relationship

with assembly language and machine language.
 A single statement in C++, for example, expands into multiple assembly language

or machine instructions.

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 5 of 16

 Is assembly language portable?
 A language whose source programs can be compiled and run on a wide variety of

computer systems is said to be portable.
 Assembly language is not portable, because it is designed for a specific processor

family.

 Why learn assembly language?
 To learn how high-level language code gets translated into machine language

(learn the details hidden in HLL code).

 To learn the computer’s hardware; by direct access to memory, video controller,
sound card, keyboard…

 To speed up applications; provide direct access to hardware (ex: writing directly

to I/O ports instead of doing a system call)

 Speed. Assembly language programs are generally the fastest programs around.
Good ASM code is faster and smaller.

 Space. Assembly language programs are often the smallest.

Virtual Machine Concept:
 A computer can usually execute programs written in its native machine language.

Each instruction in this language is simple enough to be executed using a relatively
small number of electronic circuits. For simplicity, we will call this language L0.

 Programmers would have a difficult time writing programs in L0 because it is
enormously detailed and consists purely of numbers. If a new language, L1, could be
constructed that was easier to use, programs could be written in L1. There are two
ways to achieve this:
 Interpretation: L0 program interprets and executes L1 instructions one by

one.
 Translation: L1 program is completely translated into an L0 program, which

then runs on the computer.

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 6 of 16

Translating Languages:

Specific Machine Levels:

 High-Level Language:

 Level 4
 Application-oriented languages: C++, Java, Pascal, Visual Basic . . .
 Programs compile into assembly language (Level 3)

 Assembly Language:

 Level 3
 Instruction mnemonics that have a one-to-one correspondence to machine

language
 Programs are translated into Instruction Set Architecture Level - machine

language (Level 2)

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 7 of 16

 Instruction Set Architecture (ISA):
 Level 2
 Also known as conventional machine language
 Executed by Level 1 (Digital Logic)

 Digital Logic:

 Level 1
 CPU, constructed from digital logic gates
 System bus
 Memory
 Implemented using bipolar transistors

Data Representation:
 Assembly language programmers deal with data at the physical level, so they must be

adept at examining memory and registers. Often, binary numbers are used to describe
the contents of computer memory; at other times, decimal and hexadecimal numbers
are used. You must develop a certain number formats, so you can quickly translate
numbers from one format to another.

 Each numbering format, or system, has a base, or maximum number of symbols that
can be assigned to a single digit.

Binary Numbers:
 Digits are 1 and 0

 1 = true
 0 = false

 The bit on the left is called the most significant bit (MSB), and the bit on the right is
the least significant bit (LSB).

 The MSB and LSB bit numbers of a 16-bit binary number are shown in the following
figure:

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 8 of 16

 Binary integers can be:
 A signed: A signed integer is positive or negative
 An unsigned: An unsigned integer is by default positive.
 Zero is considered positive.

 When writing down large binary numbers, many people like to insert a dot every 4

bits or 8 bits to make the numbers easier to read.
 Examples are 1101.1110.0011.1000.0000 and 11001010.10101100.

Unsigned Binary Integers:
 Starting with the LSB, each bit in an unsigned binary integer represents an increasing

power of 2.
 The following figure contains an 8-bit binary number, showing how powers of two

increase from right to left:

Translating Unsigned Binary Integers to Decimal:
 Weighted positional notation represents a convenient way to calculate the decimal

value of an unsigned binary integer having n digits:
dec = (Dn-1  2n-1) + (Dn-2  2n-2) + ... + (D1  21) + (D0  20)

Where:
D = binary digit

 For example:

 Binary 00001001 is equal to 9. We calculate this value by leaving out terms
equal to zero:

(1  23) + (1  20) = 9

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 9 of 16

 The same calculation is shown by the following figure:

Translating Decimal Integers to Binary:
 Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the

translated value:

37 = 100101

Binary Addition:
 Starting with the LSB, add each pair of digits, include the carry if present.

Integer Storage Sizes:
 The basic storage unit for all data in an x86 computer is a byte, containing 8 bits.

Other storage sizes are in the following figure:

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 10 of 16

 Large storage size:

Hexadecimal Integers:
 The following table shows how each sequence of four binary bits translates into a

decimal or hexadecimal value.

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 11 of 16

Translating Binary to Hexadecimal:
 Each hexadecimal digit corresponds to 4 binary bits.
 Example: Translate the binary integer 000101101010011110010100 to hexadecimal:

Converting Hexadecimal to Decimal:
 Multiply each digit by its corresponding power of 16:

dec = (D3  163) + (D2  162) + (D1  161) + (D0  160)
 Hex 1234 equals (1  163) + (2  162) + (3  161) + (4  160), or decimal 4,660.
 Hex 3BA4 equals (3  163) + (11  162) + (10  161) + (4  160), or decimal 15,268.

Converting Unsigned Decimal to Hexadecimal:
 Repeatedly divide the decimal value by 16 and retain each remainder as a

hexadecimal digit.
 For example, the following table lists the steps when converting decimal 422 to

hexadecimal:

Decimal 422 = 1A6 hexadecimal

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 12 of 16

Character Storage:
 ASCII Code (7-bit) American Standard Code for Information Interchange.

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 13 of 16

Boolean Operations:
 A boolean expression involves a boolean operator and one or more operands. Each

boolean expression implies a value of true or false.

 Boolean expressions created from the set of operators includes the following:
 NOT: notated as ¬ or ~ or ’
 AND: notated as ∧ or *
 OR: notated as ∨ or +

NOT:
 Inverts (reverses) a boolean value
 One operand
 Truth table for Boolean NOT operator:

 Digital gate diagram for NOT:

AND:
 Two operands
 Both must be T for T, otherwise F
 Truth table for Boolean AND operator:

NOT

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 14 of 16

 Digital gate diagram for AND:

 Example:

 ANDing the bits of X ∧ Y if X = 11111111 and Y = 00011100

X: 11111111
Y: 00011100
X ∧ Y: 00011100

 ANDing the bits of two binary integers:

OR:
 Two operands
 Both must be F for F, otherwise T
 Truth table for Boolean OR operator:

 Digital gate diagram for OR:

AND

OR

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 15 of 16

 Example:
 ORing the bits of X ∨ Yif X = 11101100 and Y = 00011100

X: 11101100
Y: 00011100
X ∨ Y: 11111100

 ORing the bits of two binary integers:

NAND:
 Two operands
 Both T = F, otherwise T
 Truth table for Boolean NAND operator:

 Digital gate diagram for NAND:

 علوم حاسوب أ.ابتسام أبكر
 البرمجة بلغة التجمیع تنظیم الحاسوب المھیكل و

 Lec1 sem5

Page 16 of 16

NOR:
 Two operands
 Any T = F, otherwise T
 Truth table for Boolean NOR operator:

 Digital gate diagram for NOR:

