gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

Basic Concepts

Contents of Lecture:

Architecture & Organization
Introduction to Assembly Language
Virtual Machine Concept

Data Representation

Boolean Expressions

R/
> 0’0

R/

*

X3

*

X3

*

X3

*

References for course:
v" KIP R. IRVINE, Assembly Language for x86 Processors, 7" Edition
v William Stallings, Computer Organization and Architecture Designing For
Performance, 9th Edition

embly
guage

Computer
Organization
Sl te AT

William Stallings

Organization and Architecture:
¢+ Architecture is those attributes visible to the programmer
v Instruction set, number of bits used for data representation, 1/O
mechanisms, addressing techniques.

X/
L X4

Organization is how features are implemented
v Control signals, interfaces, and techniques for addressing memory.

All Intel x86 family share the same basic architecture

The IBM System/370 family share the same basic architecture
This gives code compatibility

Organization differs between different versions

X/ X/ X/ X/
LSRR X G X4

Page 1 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

Computer Components:-
1) A processor to interpret and execute programs.
2) A memory to store both data and programs.
3) A mechanism for transferring data to and from the outside world.

User prograin (Executable program)
Compiler/interpreters (source code)
Assembler (Assembly code)

System software (os/ library code)

Input Devices Processing Devices

\ 4

EEE— Output Devices

Storage Devices

Figure (1) shows computer components and their interrelationships

Figure (2) The computer level Hierarchy

Page 2 of 16

Qi agle S aleaiyl
raail) iy daa) g JSgeall @ puuad) plils
sem5 Lecl

% Level 6: The User Level
v Program execution and user interface level.

s Level 5: High-Level Language Level
v' The level with which we interact when we write programs in languages such
as C, Pascal, Lisp, and Java.

s Level 4: Assembly Language Level
v Acts upon assembly language produced from Level 5, as well as instructions
programmed directly at this level.

% Level 3: System Software Level

v Controls executing processes on the system.

v" Protects system resources.

v' Assembly language instructions often pass through Level 3 without
modification.

% Level 2: Machine Level

v Also known as the Instruction Set Architecture (ISA) Level.

v Consists of instructions that are particular to the architecture of the machine.

v Programs written in machine language need no compilers, interpreters, or
assemblers.

% Level 1: Control Level

v A control unit decodes and executes instructions and moves data through the
system.

v" Control units can be microprogrammed or hardwired.

v" A microprogram is a program written in a low-level language that is
implemented by the hardware.

v" Hardwired control units consist of hardware that directly executes machine
instructions.

% Level O: Digital Logic Level
v This level is where we find digital circuits (the chips).
v" Digital circuits consist of gates and wires.
v These components implement the mathematical logic of all other levels.

Page 3 of 16

Qi agle S aleaiyl
raail) iy daa) g JSgeall @ puuad) plils
sem5 Lecl

Introduction to Assembly Language:
s Assembly language is the oldest programming language, and of all languages, bears
the closest resemblance to native machine language.

v' Assembly language is a low-level programming language for a computer.
v’ It provides direct access to computer hardware, requiring you to understand much
about your computer’s architecture and operating system.

Questions You Might Ask:
% What background should I have?
v’ Before learning Assembly language, you should have programmed in at least one
structured high-level language, such as Java, C, or C++.
v" You should know how to use IF statements, arrays, and functions to solve
programming problems.

«» What hardware and software do | need?
v Need a computer that runs a 32-bit or 64-bit version of Microsoft Windows, along
with one of the recent versions of Microsoft Visual Studio.

% What types of programs will | create?

v 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit
versions of Microsoft Windows. They are usually easier to write and understand
than real-mode programs.

v' 64-Bit Mode: 64-bit programs run under all 64-bit versions of Microsoft
Windows.

v' 16-Bit Real-Address Mode: 16-bit programs run under 32-bit versions of
Windows and on embedded systems.

% How does assembly language relate to machine language?
v Machine language is a numeric language specifically understood by a computer’s
processor (the CPU). All x86 processors understand a common machine language.

v" Assembly language consists of statements written with short mnemonics such as
ADD, MOV, SUB, and CALL.

v" Assembly language has a one-to-one relationship with machine language: Each
assembly language instruction corresponds to a single machine-language
instruction.

% How do C++ and Java relate to assembly language?
v High-level languages such as C, C++, and Java have a one-to-many relationship
with assembly language and machine language.
v' Assingle statement in C++, for example, expands into multiple assembly language
or machine instructions.

Page 4 of 16

Qi agle S aleaiyl
raail) iy daa) g JSgeall @ puuad) plils
sem5 Lecl

% Is assembly language portable?
v A language whose source programs can be compiled and run on a wide variety of
computer systems is said to be portable.
v Assembly language is not portable, because it is designed for a specific processor
family.

s Why learn assembly language?
v To learn how high-level language code gets translated into machine language
(learn the details hidden in HLL code).

v To learn the computer’s hardware; by direct access to memory, video controller,
sound card, keyboard...

v To speed up applications; provide direct access to hardware (ex: writing directly
to 1/0 ports instead of doing a system call)

v Speed. Assembly language programs are generally the fastest programs around.
Good ASM code is faster and smaller.

v Space. Assembly language programs are often the smallest.

Virtual Machine Concept:

% A computer can usually execute programs written in its native machine language.
Each instruction in this language is simple enough to be executed using a relatively
small number of electronic circuits. For simplicity, we will call this language LO.

% Programmers would have a difficult time writing programs in LO because it is
enormously detailed and consists purely of numbers. If a new language, L1, could be
constructed that was easier to use, programs could be written in L1. There are two
ways to achieve this:

v Interpretation: LO program interprets and executes L1 instructions one by
one.

v" Translation: L1 program is completely translated into an LO program, which
then runs on the computer.

Page 5 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

Translating Lanquages:

English: Display the sum of Atimes B plus C.

l

C++: cout << (A*B + C);

l

Assembly Language: Intel Machine Language:
mov eax A A1 00000000
mduclj B c *|F7 25 00000004
add eax,
call WriteInt 03 05 00000008
E8 00500000

Specific Machine Levels:

Level 4 High-Level Language
Level 3 Assembly Language
Level 2 Instruction Set

Architecture (ISA)

Level 1 Digital Logic

% High-Level Language:
v’ Level 4
v Application-oriented languages: C++, Java, Pascal, Visual Basic . . .
v Programs compile into assembly language (Level 3)

s Assembly Language:
v' Level 3
v Instruction mnemonics that have a one-to-one correspondence to machine
language
v Programs are translated into Instruction Set Architecture Level - machine
language (Level 2)

Page 6 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

¢ Instruction Set Architecture (ISA):
v' Level 2
v Also known as conventional machine language
v Executed by Level 1 (Digital Logic)

% Digital Logic:

Level 1

CPU, constructed from digital logic gates
System bus

Memory

Implemented using bipolar transistors

AN NN NN

Data Representation:

% Assembly language programmers deal with data at the physical level, so they must be
adept at examining memory and registers. Often, binary numbers are used to describe
the contents of computer memory; at other times, decimal and hexadecimal numbers
are used. You must develop a certain number formats, so you can quickly translate
numbers from one format to another.

X/
L X4

Each numbering format, or system, has a base, or maximum number of symbols that
can be assigned to a single digit.

Binary, Octal, Decimal, and Hexadecimal Digits.

System Base Possible Digits
Binary 2 01
Octal 8 01234567
Decimal 10 0123456789
Hexadecimal 16 0123456789ABCDEF

Binary Numbers:
% Digitsare 1 and 0
v 1=true
v’ 0 =false
% The bit on the left is called the most significant bit (MSB), and the bit on the right is
the least significant bit (LSB).
% The MSB and LSB bit numbers of a 16-bit binary number are shown in the following
figure:

MSB LSB
||nl 1001010011 I()()I
15 0 Bit number

Page 7 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

% Binary integers can be:
v Asigned: A signed integer is positive or negative
v" An unsigned: An unsigned integer is by default positive.
v’ Zero is considered positive.

% When writing down large binary numbers, many people like to insert a dot every 4
bits or 8 bits to make the numbers easier to read.
v" Examples are 1101.1110.0011.1000.0000 and 11001010.10101100.

Unsigned Binary Integers:

+ Starting with the LSB, each bit in an unsigned binary integer represents an increasing
power of 2.

% The following figure contains an 8-bit binary number, showing how powers of two
increase from right to left:

Ll 1]
7 6 S

I
v 2 2 2¢ 2

HENENEN
3 22 21 ~0

Binary Bit Position Values.

7 Decimal Value 7o Decimal Value
20 | 2 256

2! 2 2° 512

22 4 210 1024

2 8 21! 2048

2 16 212 4096

2 32 2 8192

2 64 / 16384

2’ 128 213 32768

Translating Unsigned Binary Integers to Decimal:
% Weighted positional notation represents a convenient way to calculate the decimal
value of an unsigned binary integer having n digits:
dec = (Dp1 x 2™%) + (Dpa x 2™2) + ... + (D1 x 2%) + (Dg x 2°%)

Where:
D = binary digit

% For example:
v Binary 00001001 is equal to 9. We calculate this value by leaving out terms
equal to zero:
1x2)+@1x2%=9

Page 8 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils
sem5 Lecl

v The same calculation is shown by the following figure:

8
+1
i)
00001001
Translating Decimal Integers to Binary:

% Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the
translated value:

Division Quotient Remainder
3712 18 1
18/2 9 0
9/2 4 1
4/2 2 0
212 1 0
1/2 0 1
37 =100101
Binary Addition:
+ Starting with the LSB, add each pair of digits, include the carry if present.
Carry: 1
ofolofloflo|l1|lo]oO 4)
+ 0 0 0 0 0 1 1 1)
0 0 0 0 1 0 1 1 (11)
Bit position: 7 6 5 4 3 2 1 0

Integer Storage Sizes:
¢+ The basic storage unit for all data in an x86 computer is a byte, containing 8 bits.
Other storage sizes are in the following figure:

Byte E
Word

Doubleword I 32

Quadword I 64

Double quadword I 128

Page 9 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

sem5 Lecl

Ranges and Sizes of Unsigned Integer Types.

Storage Size
Type Range in Bits
Unsigned byte 00281 8
Unsigned word 0261 16
Unsigned doubleword 0102721 32
Unsigned quadword 0w2% -1 64
Unsigned double quadword 01021 128

+» Large storage size:
* One kilobyte is equal to 2'° or 1024 bytes.
* One megabyte (1 MByte) is equal to 2% or 1,048,576 bytes.
* One gigabyte (1 GByte) is equal to 2%, or 10243, or 1,073,741,824 bytes.
* One terabyte (1 TByte) is equal to 2%, or 1024%, or 1,099,511,627,776 bytes.
* One petabyte is equal to 2%, or 1,125,899,906,842,624 bytes.
* One exabyte is equal to 2«’, or 1,152,921,504,606,846,976 bytes.
* One zettabyte is equal to 27 bytes.
* One yottabyte is equal to 2% bytes.

Hexadecimal Integers:
+» The following table shows how each sequence of four binary bits translates into a
decimal or hexadecimal value.

Binary, Decimal, and Hexadecimal Equivalents.

Binary | Decimal | Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 11 15 K

Page 10 of 16

gl a gle Sl aluiy

raail) iy daa) g JSgeall @ puuad) plils
sem5 Lecl

Translating Binary to Hexadecimal:
¢+ Each hexadecimal digit corresponds to 4 binary bits.
% Example: Translate the binary integer 000101101010011110010100 to hexadecimal:

1 6 A 7 9 4

0001 0110 1010 o111 1001 0100

Converting Hexadecimal to Decimal:
% Multiply each digit by its corresponding power of 16:
dec = (D3 x 16%) + (D, x 16%) + (D1 x 16%) + (Do x 16°)
< Hex 1234 equals (1 x 16°) + (2 x 16%) + (3 x 16%) + (4 x 16°), or decimal 4,660.
< Hex 3BA4 equals (3 x 16%) + (11 x 162) + (10 x 16%) + (4 x 16°), or decimal 15,268.

lists the powers of 16 from 16% to 167

16" Decimal Value 16" Decimal Value
16° 1 16* 65,536
16 16 16° 1,048,576
16 256 165 16,777,216
16° 4096 167 268,435,456

Converting Unsigned Decimal to Hexadecimal:

% Repeatedly divide the decimal value by 16 and retain each remainder as a
hexadecimal digit.

% For example, the following table lists the steps when converting decimal 422 to
hexadecimal:

Division Quotient Remainder
422/16 26 6
26116 1 A
1/16 0 1

Decimal 422 = 1A6 hexadecimal

Page 11 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

sem5 Lecl

Character Storage:
s ASCII Code (7-bit) American Standard Code for Information Interchange.

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Hitml Chr{ Dec Hx Oct Html Chr
0 0000 NUL (null) 32 20 040 «#32; Space| 64 40 100 @ [| 96 60 140 `
1 1001 50H {start of heading) 33 21 041 «#33; ! 65 41 101 «#65; A | 97 61 141 «#97; &
2 2002 5TX (start of text) 34 22 042 «#34; " 66 42 102 &«#66; B | 98 62 142 «#98; b
3 3003 ETX {end of text) 35 23 043 «#35; # 67 43 103 «#67; C | 99 63 143 «#99; C
4 4004 EOT (end of transmission) 36 24 044 «#36; § 68 44 104 «#68; D 100 64 144 «#100; d
5 5005 ENQ {enquiry) 37 25 045 «#37; % 69 45 105 «#69; E |101 65 145 «#101; ¢
6 6 006 ACK (acknowledge) 38 26 046 «#38; ¢ 70 46 106 «#70; F |102 66 146 f £
7 7007 BEL (bell) 39 27 047 «#39; ' 71 47 107 «#71; G |103 67 147 &«#103; ¢
8 8010 BS (backspace) 40 28 050 «#40; | 72 48 110 &«#72; H (104 68 150 h h
9 9011 TAB (horizontal tab) 41 29 051 «#4l;) 73 49 111 «#73; I |105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 2A 052 «#42; * 74 4k 112 «#74; 7 (106 6A 152 j)
11 B 013 VT (vertical tab) 43 2B 053 «#43; + 75 4B 113 «#75; K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 «#44; , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 CR ({carriage return) 45 2D 055 «#45; - 77 4D 115 «#77; 1 (109 6D 155 m 1
14 E 016 50 (shift out) 46 2E 056 «#46; . 78 4E 116 «#78; N |110 6E 156 «#110; n
15 F 017 SI (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 [111 6F 157 «#111; 0O
16 10 020 DLE (data link escape) 43 30 060 0 0 80 S0 120 «#80; P |112 70 160 «#ll2; D
17 11 021 DC1 (device control 1) 49 31 061 «#49; 1 81 S1 121 «#81; Q |113 71 161 «#113; 4
18 12 022 DC2 (device control 2) 50 32 062 «#50; 2 82 52 122 «#82; R |114 72 162 «#ll4;
19 13 023 DC3 (device control 3) 51 33 063 «#51; 3 83 53 123 «#83; 5 [115 73 163 «#l115; 8
20 14 024 DC4 (device control 4) 52 34 064 «#52; 4 84 54 124 «#84; T |116 74 164 «#116; t
21 15 025 NAK (negative acknowledge) | 53 35 065 5 5 85 55 125 «#85; U [117 75 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 «#54; 6 86 56 126 «#86; V |118 76 166 «#118; v
23 17 027 ETB (end of tramns. block) 55 37 067 «#55; 7 87 57 127 «#87; U |119 77 167 «#119; v
24 18 030 CAN (cancel) 56 38 070 «#56; & 88 58 130 «#88; X |120 78 170 «#120; X
25 19 031 EM (end of medium) 57 39 071 «#57; 9 89 59 131 «#89; ¥ |121 79 171 «#121; ¥
26 1A 032 SUB (substitute) 58 3A 072 «#58; : 90 SA 132 «#90; 7 |122 7A 172 «#122; 2
27 1B 033 ESC (escape) 59 3B 073 «#59; ; 91 SB 133 «#91; [|123 7B 173 «#123; |
28 1C 034 F§ (file separator) 60 3C 074 «#60; < 92 SC 134 «#92; \ [124 7C 174 s#124;
29 1D 035 G5 {group separator) 61 3D 075 «#61; = 93 5D 135]] [125 7D 175 } |
30 1E 036 RS (record separator) 62 3E 076 «#62; > 94 SE 136 «#94; * [126 7E 176 ~ ~
31 1F 037 US (unit separator) 63 3F 077 ? ? 95 SF 137 «#95; _ (127 7F 177 «#127; DEL

Source: www.LookupTables.com

Page 12 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

sem5 Lecl

Boolean Operations:
+ A boolean expression involves a boolean operator and one or more operands. Each
boolean expression implies a value of true or false.

+ Boolean expressions created from the set of operators includes the following:
v" NOT: notated as = or ~or’
v" AND: notated as A or *
v" OR: notated as V or +

Expression Description
—X NOT X
XAY XANDY
XvyY XORY
—XvY (NOTX)ORY
—(XAY) NOT(XANDY)
XAmY X AND (NOTY)

NOT:

% Inverts (reverses) a boolean value

+ One operand

¢ Truth table for Boolean NOT operator:

X | =X
F T

(AR

P .
| H

>,

+ Digital gate diagram for NOT:

AND:

+ Two operands

+ Both must be T for T, otherwise F

+«»+ Truth table for Boolean AND operator:

X

s|m=| =] <

Page 13 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

sem5 Lecl

+ Digital gate diagram for AND:

s Example:
v ANDing the bits of X A Y if X =11111111 and Y = 00011100

X: 11111111
Y: 00011100
XAY: 00011100

++ ANDing the bits of two binary integers:

X: | I I U I U I U O I A I B

AND AND AND AND AND AND AND AND

XAY: 010101 1 11010

OR:

+ Two operands

+ Both must be F for F, otherwise T

¢ Truth table for Boolean OR operator:

X XvY

= =] =] <

- =] =] =

I
I
T
1

X/

+ Digital gate diagram for OR:

Page 14 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

s Example:
v ORing the bits of X v Yif X = 11101100 and Y = 00011100

X: 11101100
Y: 00011100
XVY: 11111100

% ORIing the bits of two binary integers:

X: 1 1 1 0 1 1 010

OR OR OR OR OR OR OR OR

NAND:

s+ Two operands

% Both T =F, otherwise T

% Truth table for Boolean NAND operator:

X | Y |XNANDY
F T
FIT T
T|F T
T|T F
% Digital gate diagram for NAND:
NAND

Page 15 of 16

gl a gle Sl aluiy
raail) iy daa) g JSgeall @ puuad) plils

semS Lecl

Z

OR:

s+ Two operands

% Any T =F, otherwise T

% Truth table for Boolean NOR operator:

X | Y |XNORY
F T
FIT F
T|F F
TI|T F

% Digital gate diagram for NOR:

=~

NOR

Page 16 of 16

