
 علوم حاسوب أ.ابتسام أبكر
Sem1 Lec3 Programming Fundamental

Page 1 of 4

The Software Development Life Cycle
 Contents of Lecture:

 Computer Programming
 The Software Development Life Cycle (SDLC)
 Constants and variables

Computer Programming

 Programmers do not sit down and start writing code right away when trying to
make a computer program.

 Instead, they follow an organized plan or methodology that breaks the process
or problem into a series of tasks.

 The Software Development Life Cycle (SDLC)
 SDLC is a process followed for a software project, within a software organization.

It consists of a detailed plan describing how to develop, maintain, replace or
enhance specific software.

 Here are six of the most common SDLC methodologies:
 Waterfall Model
 V-Shaped Model
 Iterative Model
 Spiral Model
 Big Bang Model
 Agile Model

 Here are the basic steps in trying to solve a problem on the computer:

1. Problem Definition
2. Problem Analysis
3. Algorithm design and representation (Pseudocode or flowchart)
4. Coding and debugging

 1. Problem Definition
 This stage is the formal definition of the task.
 It includes:

 The specification of inputs and outputs processing requirements
 System constraints
 Error handling methods.

 This step is very critical for the completion of a satisfactory program.
 It is impossible to solve a problem by using a computer, without a clear

understanding and identification of the problem.
 Inadequate identification of problem leads to poor performance of the system.

 علوم حاسوب أ.ابتسام أبكر
Sem1 Lec3 Programming Fundamental

Page 2 of 4

 If programmer does not spend enough time at this stage, programmer may find
that the program written my fails to solve the real problem.

 A programmer is usually given a task in the form of a problem. Before a program

can be designed to solve a particular problem, the problem must be well and
clearly defined first in terms of its input and output requirements.

 Because a clearly defined problem is already half the solution.

 2. Problem Analysis

 After the problem has been adequately defined, the simplest and yet the most
efficient and effective approach to solve the problem must be formulated.

 Usually, this step involves breaking up the problem into smaller and simpler sub-
problems.

 3. Algorithm design and representation (Pseudocode or flowchart)

 Once our problem is clearly defined, we can now set to finding a solution.
 In computer programming, it is normally required to express our solution in a

step-by-step manner.

 Definition: An Algorithm is a clear and unambiguous specification of the steps
needed to solve a problem.

 It may be expressed in either:
 Human language (English, Arabic)
 Through a graphical representation like a flowchart
 Through a pseudocode, pseudocode is a cross between human

language and a programming language.

4. Coding and Debugging

 After constructing the algorithm, it is now possible to create the source code.
 Using the algorithm as basis, the source code can now be written using the chosen

programming language.

 Most of the time, after the programmer has written the program, the program isn't
100% working right away.

 The programmer has to add some fixes to the program in case of errors (also
called bugs) that occurs in the program. This process is called debugging.

 There are two types of errors that a programmer will encounter along the way:
 Compile-time error
 Runtime error.

 علوم حاسوب أ.ابتسام أبكر
Sem1 Lec3 Programming Fundamental

Page 3 of 4

1) Compile-Time Errors:
 Occur if there is a syntax error in the code.
 The compiler will detect the error and the program won't even compile.
 At this point, the programmer is unable to form an executable that a user can run

until the error is fixed.

 Forgetting a semi-colon at the end of a statement or misspelling a certain
command, for example, is a compile-time error. It's something the compiler can
detect as an error.

2) Runtime error:

 A runtime error is a program error that occurs while the program is running
 Compilers aren't perfect and so can't catch all errors at compile time.

 Example: want to add two numbers write number1 – number2 instate of writing

number1 + number2.
 Also. This is especially true for logic errors such as infinite loops.

 Other types of run-time errors are when an incorrect value is computed, the wrong

thing happens, etc.
 Example:
 In order to understand the basic steps in solving a problem on a computer, let us

define a single problem that we will solve step-by-step as we discuss the problem
solving methodologies in detail.

 Problem Definition: “Create a program that will know how much older one person is than another.”

 Problem Analysis: Input to the program:

 Output of the program:

 Algorithm design and representation (Pseudocode or flowchart):

 Coding and debugging:

 علوم حاسوب أ.ابتسام أبكر
Sem1 Lec3 Programming Fundamental

Page 4 of 4

Constants and variables
 Constants and variables are two entities which are used to store information

(technically called data) in your program. Data has values.

 Definitions: Constant is a value that never changes as the instructions in a program are
followed. Constants can be any type of data.

 Variable is a value that does change as the instructions in a program are
followed. Variables can be any type of data.

 Both constants and variables are given names; we use the name of the constant or

variable to refer to the locations rather than the memory address.

 For this unit, the main reason why we use these names is to make the program clearer.
 You should always use names that are most meaningful to the end user (the person

who is going to use the system you design) or to the problem, this is very important as
it helps to make the program more understandable.

 There are four rules to name constants and variables as follows:
1. Name a constant or variable according to what it represents.
2. Do not use spaces in a constant or variable name.
3. Start a constant or variable name with a letter, not a number.
4. Do not use a dash in a name (the computer will think it a subtraction sign), an

underscore is fine.

