Two-Dimensional Array

Contents of Lecture:

* Introduction
* Declaration and Initialization
* Processing 2D Arrays
* Example
* Homework number (8) delivered next week

Introduction

* While one-dimensional arrays allow data to be placed in an array one row at a time, two-dimensional arrays are capable of storing data in both rows and columns.
* To accomplish this, each row in a two-dimensional array is associated with the number of columns defined for the array.
* As with one-dimensional arrays, the entire array must contain elements of the same type.
* Because of the capability of storing data in rows and columns, it is obvious that twodimensional arrays can provide more flexibility than one-dimensional arrays.

Declaration and Initialization

* Declaring a two-dimensional array has the following form:

Declare arr_name[NUM_ROWS][NUM_COLS]

* Where:
$>$ arr name is the variable name for the array
$>N U M_{-} R O W S$ is the maximum number of rows for the array
$>$ And $\bar{N} U M_{-} C O L S$ is the maximum number of columns for the array.
* To declare an array of five rows and three columns, the following code could be used:
$>$ Declare arr[5][3].

$>$ Or declare a two-dimensional array by initial values; we can be accomplished using the following format:

The above code initializes:
$\operatorname{arr}[0][0]=0$
$\operatorname{arr}[0][1]=1$
$\operatorname{arr}[1][0]=3$
$\operatorname{arr}[1][1]=4$
$\operatorname{arr}[4][0]=2$

Processing 2D Arrays

* Because 2D arrays must be filled by row and column, processing a 2D array can be done using nested for loops.
* For instance, to fill an array declared numArr[10][10] with user input, the following nested loop scheme could be used:

For row $=0$ to 9

```
For col = 0 to 9
    Prompt user for numArr[row][col]
    Get numArr[row][col]
    \(\mathrm{col} \leftarrow \mathrm{col}+1\)
    EndLoop
    row \(\leftarrow\) row +1
    EndLoop
```

Programming Fundamental Lec11

* To display the contents of the above filled array ten values per line, the following code could be used:

For row $=0$ to 9
For col = 0 to 9
Display numArr[row][col]
$\mathrm{col} \leftarrow \mathrm{col}+1$
EndLoop
row \leftarrow row +1
EndLoop

Example:

Write pseudo code and draw flowchart to input and output number in two-dimensional array of 3 rows and four column.

1. Begin
2. Declare arrNum[3][4]
3. For $\mathrm{i}=0$ to 3

For $\mathrm{k}=0$ to 4
Prompt user to enter arrNum $[\mathrm{i}][\mathrm{k}]$
Get arrNum[i][k]
$\mathrm{k}=\mathrm{k}+1$
EndLoop
$\mathrm{i}=\mathrm{i}+1$
EndLoop
4. For $\mathrm{i}=0$ to 2

For $\mathrm{k}=0$ to 3
Display arrNum $[\mathrm{i}][\mathrm{k}]$
$\mathrm{k}=\mathrm{k}+1$
EndLoop
$\mathrm{i}=\mathrm{i}+1$
EndLoop
5. End

Programming Fundamental

Homework number (8) delivered next week

1) Suppose we have a two dimensional number array of exactly ten rows and ten columns, and we need to find the sum of the integers along the main diagonal of the array. Write a pseudo code and draw a flowchart to do this operation.
2) Write a pseudo code and draw a flowchart that displays the maximum and minimal value in two-dimensional array that have size 6×4.
3) write a pseudo code and draw a flowchart to display the summation of each row in two-dimension array of three rows and three columns, for example if you input values like the figure below

2	8	7
5	5	1
4	3	9

The output should like this:
17
11
16

