
(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 9, No. 2, February 2011

A Linux Kernel Module for Locking Down
 Applications on Linux Clients

Noureldien A. Noureldien
dept. of Computer Science

University of Science and Technology
Khartoum, Sudan

noureldien@hotmail.com

Abubakr A. Abdulgadir
dept. of Computer Engineering

University of Gezira
Madani, Sudan

bakrysalih@gmail.com

Abstract—Preventing the installation and execution of
unauthorized software should be a high priority for any
organization. Allowing users to install and execute unauthorized
software can expose an organization to a variety of security risks.
In this paper we present a graylisting solution to control
application execution on Linux clients using a loadable kernel
module. Our developed kernel based solution, Locking
Applications on Linux Clients or LALC is a new Linux
subsystem which adds a graylisting application lockdown
capability to Linux kernel. The restriction policy applied by
LALC to specific client is based on the preconfigured security
level of the client’s group and on the application the client desire
to execute or to install. LALC is flexible enough to support the
business needs as well as new applications and new versions of
existing applications. And it is so secure that no end user can
circumvent its configuration.

Keywords-Application Lockdown; Linux Kernel Module;
Restriction Policy; Whitelisting; Blacklisting; Graylisting.

I. INTRODUCTION
The rising number of computer security incidents since

1988 [3][4] suggests that malware is an epidemic.

Malware is referred to by numerous names. Examples
include malicious software, malicious code and malcode. Many
definitions have been offered to describe malware. For
instance, [7] describe a malware instance as a program whose
objective is malevolent. Malicious codes defined in [6] as “any
code added, changed, or removed from a software system in
order to intentionally cause harm or subvert the intended
function of the system.”

Nowadays, in many organizations, employees can peruse
web sites, send and receive email, download software, and
install applications whenever they want. On one hand, such
openness helps business flow by empowering workers to use
information freely; on the other, it can risk the security and
integrity of both computers and data as it opens a wide window
for malware and malicious attacks.

Often the first defensive step is to run an anti-virus and
anti-malware protection software. These programs perform a
thorough cleaning of existing virus and malware infections,
returning the systems to a relatively stable state. However, they
are typically just behind the hacker curve. Computers are

vulnerable to newly released viruses or attacks until the
malware code is identified and the anti-virus agents are updated
on every machine.

Using these methods makes a “zero day attack” almost
impossible to prevent using anti-virus software. And due to this
failure of anti-malware, organizations take the choice of
locking down their entire networking environments.

Locking down a network client can mean a lot of different
things. In this paper we refer to a client as being locked down if
it is configured in such a way that prevents unauthorized
applications from being installed or executed.

It is obvious that locking down clients will stop users from
installing or executing an application that contains spyware, a
Trojan, a virus, or some other form of malware. This will
result in a tremendous security improvement and business
continuity.

Locking down client machines can be done using different
methods. The problem with many of these methods, however,
is that they are either impractical, costly or places a heavy
burden on the network administrators.

In this paper, we develop a kernel based solution for
Locking Application on Linux Clients (LALC) applying a
graylisting approach. LALC uses a central server that controls
applications running on clients. The server was configured to
define client’s security levels and their associate allowable and
disallowable applications. Clients are configured to request
server permission on executing an application. The server
permits or denies client requests by comparing the hash value
of the requested application to those pre-stored values. For
flexibility and ease of use, the solution provides a Server
Configuration Utility for managing clients groups, their
security levels and their associate restriction lists.

This paper is organized as follows. In Section II, we revise
the basic locking down approaches, and we discuss the design
of LALC in Section III. In Section IV we show how we
implement and test LALC and we conclude the paper in
Section V.

37 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 9, No. 2, February 2011

II. LOCKING DOWN APPROCHES
Basically, there are three major approaches for locking

down client applications; blacklisting, whitelisting and
graylisting.

A. Blacklisting Approach
This approach applies the security premise “what is not

expressly defined to be prohibited must be allowed”. So in this
approach only those applications that have been defined to be
unwanted, the blacklist, will not be executed, all other
applications will be allowed to run. Clearly this approach will
not defend against malicious applications not previously
identified in the blacklist.

B. Whitelisting Approach
This is the reverse approach to blacklisting, it applies the

security premise “what is not expressly defined to be allowed
must be prohibited”. Application whitelisting is emerging as
the security technology that gives a true defense-in-depth
capability, filling in the gaps that anti-virus was never designed
to cover. Application whitelisting is characterized by the
ability to identify authorized executables and associated files
and to treat as an attack any program or file that is not on the
authorized whitelist. Recent advances in application
whitelisting, including automatically approving files from
trusted sources to reduce administrative overhead or allowing
end-users to personalize their endpoint for greater user
acceptance, has made application whitelisting an attractive
choice.

Application whitelisting is a technique gathering
momentum in commercial security systems. Most implement
additional access controls within the operating system to stop
unauthorized programs from running. Products from companies
such as CoreTrace [5], SolidCore [10] and Bit9 [2] all use
application whitelists to create a safer working environment.

C. Graylisting Approach
This approach combines the previous two approaches; it

uses three lists, while, black and a gray. This approach works
by focusing on valid whitelisting applications and allow only
those applications to run. All the applications in the blacklist
are not allowed to run. When an application is not in the white
list or in the black list, it will be placed in the gray list for
further justification. This approach uses software authentication
to reduce the problem of malware and other unwanted software
[9].

III. LOCKING APPLICATIONS ON LINUX CLIENTS
(LALC)

LALC is a graylisting solution that restricts application
execution on network Linux clients. The solution maintains
three lists, a white list for applications that are authorized to
run, a black list for applications that are solely prohibited and a
gray list for applications that are neither white nor black.

LALC deploys client group restriction policy which allow
establishment of different client groups that have different
security levels. For system flexibility LALC implements three

security levels, namely, Lockdown, Block-and-Ask and
Monitor. In Lockdown level, only whitelisted applications are
allowed to run. In Block-and-Ask a confirmation message for
executing the application is sent to the user when the
application is gray. In the Monitor level the gray applications
are allowed to be executed without user confirmation. In all
security levels, the gray applications are added to the gray list
for later administrator analyses.

A. LALC Components
LALC is a client/server application. On the client side, we

build two components, a Loadable Kernel Module (LKM) to
intercept client attempts to execute applications, and an Agent
program which was designed to calculate the hash value of the
desired application file using MD5 algorithm and to
communicate with the server. Although the Agent Module
employs MD5 algorithm but any other hashing algorithm can
be used instead.

On the server side we build a Server program to receive
client’s requests and to generate responses, and a Server
Configuration Utility to allow administrators to manage client
groups, security levels and application lists.

1) Client Components: Two components are deployed on
each client; the Loadable Kernel Module (LKM) and the
Agent.

a) The Loadable Kernel Module (LKM): The LKM is
built based on the facts that; a loadable kernel module is a
piece of code that can be dynamically loaded or unloaded from
the Linux kernel, and once it loaded it becomes a part of the
kernel [8]. And Linux kernel dedicates a specific system call,
namely execve, to handle client request to the kernel for
executing a program file [1].

LKM was designed to intercept client requests on behalf of
the original execve, and to invoke the Agent. Based on the
return value LKM may or may not allow original execve to
handle the client application.

LKM comprises four functions; initialization(),
custom_execev(), write() and read().

• Initialization() :When LKM is loaded into the kernel it
executes the initialization(). This function redirects
client calls from the original execve system call to the
custom_execve function inside the LKM.
Initialization() performs redirection by replacing the
execve address in the kernel table by the address of the
custom_execve(), and saving the original execve
address. Also the initialization() prepares a
communication channel to the Agent process via a
/proc file. It creates a /proc file and connect its
read/write operations with read() and write() inside the
LKM. Also it creates two buffers to be used by LKM
other functions, namely, Request Buffer and Response
Buffer. Generally, /proc file system is a method used
for communication between the kernel and user
processes [9]. Fig. 1 shows how LKM initialization
function works.

38 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 9, No. 2, February 2011

• custom_execve(): The purpose of this function is to
replace the original execve system call, and therefore it
will be executed whenever a client process desires to
execute an application file. It saves the name of the
application file to be executed in the Request Buffer
and sets a flag to indicate that a request to execute an
application file is pending (Request_Pending = 1).
After that it wakes up the Agent to handle the pending
request, and it renders itself in awaiting state. After
custom_execve wakes up by the write(), it reads the
Request Buffer and resets the pending flag. Based on
the value in the buffer, custom_execve either allows
the execution of the application or denies it. On
allowing execution custom_execve executes the
original execve system call, and on denying, it returns
an error code on behalf of the original execve system
call. Fig.2 shows how the custom execve function
works.

Figure 1. KLM Initialization Function

• read(): When the Agent tries to read the /proc file this
function is executed. It waits until the variable
Request_Pending is set. Once the variable is set, it
returns the contents of the Request Buffer - which is
the application file name- to the Agent module.

• write(): When the Agent tries to write to the /proc file
this function is executed. The purpose of write() is to
write to Response Buffer the message that the Agent
desire to write to the /proc file and then it call upon
custom_execve function.

Figure 2. LKM custom_execve function

b) The Agent: The Agent program is a user level
program that runs in the client machine. Its purpose is to
calculate the hash value for the application file content, and to
forward it to the server combined with the requesting client
hostname and the application file name. Later, the Agent has
to forward back the server’s response to the LKM
custom_execve function through writing to /proc file. Fig.3
shows how Agent works.

Figure 3. Agent program main loop

2) Server Components: Two components are deployed on
the server side; the Server program and the Server
Configuration Utility.

39 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 9, No. 2, February 2011

a) Server Program: The main task of the Server
program is to receive client requests via Agent programs and
to respond to those requests. The request’s hash value and the
requested client host name are used by the server to generate
the permission response, and it uses the application file name
to identify the client in its log file.

The server generates the response by manipulating a
database which stores information about client groups, group’s
security levels and application lists. The server waits for
Agents connections on a specific TCP port, and when an Agent
connects to that port, the server receives the request and sends
back a response. Fig.4 shows how the server works.

b) Server Configuration Utility: The Server
Configuration Utility is a friendly graphical user interface for
enterprise administrators to configure the Server to enforce
enterprise restriction policy. They can use it to manage clients,
clients groups, group’s security levels and application lists.

Figure 4. Server program loop

The database manipulated by the configuration utility
consists of three tables that stores information about clients,
client groups, and restriction rules.

The clients table contains information about each client,
which includes; the client host name and its corresponding
group ID. The client groups table is where group information is
stored, which includes; group ID, group-name and the group
security level. The restriction rules table stores information
about rules applied to each group. A rule specifies the applied
list (white or black) to a specific application for a particular
group.

IV. IMPLEMENTATION AND TESTING

A. Implementation
Many tools have been used to implement the system. Open

source tools have been chosen for implementation. Linux

ubuntu 7.04 have been chosen as an operating system for client
and server machines. The LKM is written in C language. The
Agent, Server and the Server Configuration Utility are written
in C++ with Qt4 library. Qt is a library that helps in building
GUI C++ programs. The database management system used
was SQLite. SQLite is a self-contained, serverless SQL
database engine. The hashlib++ library was used to generate
the hash of executable files in the agent program.

B. Testing
To test LALC, LKM and the Agent program have been

compiled in the client side. A shell script has been written to
load the LKM and to run the Agent at startup. When the client
machine comes up the LKM and the Agent are ready.

The Server and the Server Configuration Utility have been
compiled in the server machine and the Server was started.
Groups have been added using the Server Configuration Utility
and clients have been added to each group. The lock-down
security level has been chosen for the group and applications
have been added to the whitelist.

We test the system by attempting to launch two programs
form the client machine, one is a white listed and the other is
not. The system performs exactly as expected; the whitelisted
program is executed while the other one is prohibited.

V. CONCLUSIONS
LALC brings an easy-to-use, kernel integrated solution for

locking applications on Linux clients. Its simplicity makes
extending it fairly easy, while its integration into Linux kernel
allows it to improve Linux security features that support
enterprise needs.

REFERENCES
[1] Andrew S. Tanenbaum, Modern Operating Systems, Prentice hall, 2nd

ed , 2001.
[2] Bit9 global software registry (website) (April 2010).
[3] Bit9 global software registry (website) (April 2010). URL

http://www.bit9.com/products/gsr.php
[4] CERT/CC, Carnegie Mellon University. http: // www.cert.org/

present/cert-overview-trends/ module-4. pdf , May 2003.
[5] CoreTrace: Application Whitelisting For Enterprise Endpoint Control

(Website) (April 2010). URL http://www.coretrace.com/
[6] G. McGraw and G. Morrisett. Attacking malicious code: A report to the

infosec research council. IEEE Software, 17(5):33–44, 2000.
[7] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,

"Semantics-aware malware detection. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy," pp 32–46, 2005.

[8] Peter Jay Salzman, Ori Pomerantz, "The Linux Kernel Module
Programming Guide", ver 2.4.0, 2001.

[9] Robin Bloor, Partner, "Antivirus is Dead", Hurwitz & Associates, 2006
[10] Solidcore (Website) (April 2010). URL http://www.solidcore.com

40 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

