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ABSTRACT

The factorization of integers of the form N = p x g, where p and q are primes is of special interest in cryptography
and algebra. It is well known facts that a prime humber P is in one o two series; P mod 6 = +1, and each prime P generate a

series of composite numbers of the form N mod 6 = +1.

Based on the concept of Integer Absolute Position, which define the position of an integer N, where N mod
6 = £1, within its series as AP (N) = N div 6, we develop a fast factorization algorithm for composite integers of the form

N =p x g, where p and g are primes and N mod 6= + 1.

In comparing the developed algorithm with the well known factorization algorithm Pollard Rho, the developed
algorithm out performs Pollard Rho under certain conditions, namely, when the value of the smallest factor p/q is small or

when the values of p and q are relatively close.
KEYWORDS: Form N =P X Q, Where P and Q are Primes and N MOD 6= + 1, Cryptography and Algebra
1. INTRODUCTION

Fast factoring algorithms are important for ensuring that sensitive data is protected in electronic transmissions [1].
Also factoring is an important process in algebra which is used to simplify expressions, simplify fractions, and solve

equations.

Today, factoring algorithms are tending to be of great interest in cryptography due to the fact that some encryption
algorithms get their cryptographic strength from the difficulty of factoring large Integers, such as the RSA encryption
algorithm.

If it were possible to factor products of large prime numbers quickly, RSA algorithm would be insecure,
and consequently the protocols that relies on the security of the RSA algorithm such as SSL [2], which is used to secure

TCP/IP connections over the web.

There are many proposed factorization algorithm that attempt to improve factorization performance. In fact, most
of the algorithms that exist today run on the order of en, where e is Euler’s number [3]. Generally speaking, the run time of

factoring algorithms is either depends on the size of N, the number being factored or on the size of factor found, F [4].

Examples of algorithms that their run time depends on the size of N includes; Lehman’s algorithm [5] which has a
rigorous worst-case run time bound O(N 1/3), Shanks’s SQUFOF algorithm [6], which has expected run time O(N1/4).
Shanks’s Class Group algorithm [7,8] which has run time O(N 1/5+€) on the assumption of the Generalized Riemann
Hypothesis, the Continued Fraction algorithm [9] and the Multiple Polynomial Quadratic Sieve algorithm [4,7,14], which
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under plausible assumptions have expected run time O(exp(c(log N log log N) 1/2)), where c is a constant, and the fastest
known general-purpose factoring algorithm, the General Number Field Sieve (GNFS), which in asymptotic notation takes
S = O (exp((64/9 n) 1/3 (log n) 2/3)) steps to factor an integer with n decimal digits. The running time of the algorithm is

bounded below by functions polynomial in n and bounded above by functions exponential in n .

On the other hand, algorithms that their run time depends mainly on the size of the factor found f, includes; the
trial division algorithm, which has run time O(f - (log N)2). The Pollard rho algorithm [10], which has expected run time
O(f1/2-(1ogN)2). Lenstra’s “Elliptic Curve Method” (ECM) [11, 12] which has expected run time O(exp(c(log f log log f)

%. log(N)2 ), where c is a constant.

This paper contributes to the efforts of developing fast factoring algorithms. The paper proposes a deterministic
factoring algorithms for integers that takes the RSA modulus form, that is, integers of the form N=p X g, where p and q are

primes, and N mod 6 = +1.

The proposed algorithm is developed using the concept of integer absolute position defined in [13], and its Java
implementation is compared to some known fast factorization algorithms. The experimental tests show that the developed

algorithm is competent when p and q are relatively closed.

The rest of this paper is organized as follows; in section 2 a preliminary theory about prime series and the nature
of the composite numbers in the form N mod 6 =+1 is stated and the composite absolute position matrices of composites of
the form N mod 6=+1 are developed. In section 3 the proposed algorithm is presented. Section 4 is dedicated for

experimental testing and results. Conclusions are given in section 5.
2. PRELIMINARY THEORY

It is a known fact that a prime number P satisfies either P mod 6 = 1 or P mod 6 = -1, we call the sets {N: N mod 6
=-1,NezZ+}and {N: Nmod 6 =1, N € Z+}, R5 and R1 prime series respectively. Thus R5 = {5, 11, 17, 23, 29, 35, 41,
47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107,....} and R1 = {1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91,
97,...... ).

A composite number N is in R1 if it is a result of multiplying two integers that both belongs either to R1 or R5,

i.e. N =pxq, € R, when either p and q € R1 or € R5. We express this fact in the following theorem.
Theorem (1)
For any integer N € R1, then N is either a prime or composite number.

e If N is a composite number that has exactly two prime factors, i.e. N=p X q, then both p, g are € R1 or both p and
g€ R5.

e If N is a composite number that has more than two prime factors, i.e. N=pl x p2 X ...pi, >3, then zero or an even

number of pi's are € R5, and the others € R1.
Proof
(a) Suppose N € R1 is a composite number that has two factors, then

N = pg — pq (mod 6) =1 — (((p mod 6) (g mod 6)) mod 6) =1
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Since (1) holds only when both (p mod 6) = 1 and (g mod 6) = 1, therefore the two factor p and q € R1, or when
both (p mod 6) =5 and (q mod 6) = 5. Therefore the two factor p and g € R5.

(b) Proof is directly follows from (a).

Based on theorem 1 and prime series definition, N=p x g, where p and g are primes is an entry in one of two

labeled matrices A and B, shown below.

Matrix A: Space of Composite Numbers in R1 that results from R1*R1

R1 7 13 19 | 25 | 31 37 43 |49 |55 | 61 | 67 | 73 | 79 | 85 | Rl
49 91 [133 175|217 | 259 | 301 7
91 | 169 | 247 | 325 | 403 | 481 | 559 13
133 | 247 | 361 | 475 | 589 | 703 | 817 19
175 | 325 | 475 | 625 | 775 | 925 | 1075 25
217 | 403 | 589 | 775 | 961 | 1147 | 1333 31

Matrix B: Space of Composite Numbers in R1 that Results from R5*R5

R5 5 11 | 17 | 23 | 29 35 41 | 47| 53 59 65 71 77 83 | R5
25 | 55 | 85 | 115|145 175 | 205 | ... 5
55 | 121|187 | 253 | 319 | 385 | 451 | ... 11
85 | 187 | 289 | 391 | 493 | 595 | 697 | ... 17
115 | 253 | 391 | 529 | 667 | 805 | 943 | ... 23
145 | 319 | 493 | 667 | 841 | 1015 | 1189 | ... 29

The position of each number matrix A or B is called Absolute Position (AP), and for a given integer N,
this position is given by: AP (N) = N div 6 [13]. Using absolute position concept, matrix C and D, generated from matrices

A and B respectively, defines the Absolute Positions for composite numbers in R1.

Matrix C: Composite Number’s Absolute Positions in R1 that result from R1 x R1

P [ 7 13 ] 19 | 25 | 31 | 37 | 43 | 49| .

Psl1l 2|3 |a|5 |67 ?\5 Q
AP :

8 | 15 | 22 | 29 | 36 | 43 | 50 1] 7

15| 28 | 41 | 54 | 67 | 80 | 93 2 | 13

22| 41 | 60 | 79 | 98 | 117 | 136 3 | 19

29 | 54 | 79 | 104 | 129 | 154 | 179 4 | 25

36 | 67 | 98 | 120 | 160 | 191 | 222 5 | 31

43| 80 | 117 | 154 | 191 | 228 | 265 6 | 37

50 | 93 | 136 | 179 | 222 | 265 | 308 7 1 43

S L TR

Matrix D: Composite Number’s Absolute Positions in R1 that Result from R5 x R5

P [11] 17 | 23 | 20 | 35 | 41 :
PSl112 |3 |4 |56 25 Q
AP :

20| 31 | 42 | 53 | 64 | 75 1| 1
31| 48 | 65 | 82 | 99 | 116 2 | 17
42 | 65 | 88 | 111 | 134 | 157 3 | 23
53 | 82 | 111 | 140 | 169 | 198 4 | 29
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If we eliminate in C and D the columns and rows that are generated by composite labels such as 25, 35, 49, 55,
85, 121,...etc, (shaded in matrixes C and D), then the remaining space contains absolute positions of composites that are

generated by exactly two prime factors, P and Q.

For matrix C, the position of any entry in the matrix space can be denoted by Cij , where i and j denotes absolute
positions of the prime factors P and Q that compose Cij; For example C63 is the absolute position of a composite whose
factors have absolute positions 6 and 3.(since Cij = Cji there is no meaning to differentiate between row label i and column
label j).

Now, if Cij is an AP in matrix space which is generated column wise by the prime P and row wise by the prime Q,

then Cij satisfies the following two equations:
Cij=PXAP(Q)+ AP(P)=PXxi+]j 1)
Cij=QXxAP(P)+AP(Q)=Qxj+i )
To express Cij in terms of i and j only, and since P = 6j + 1 and Q = 6i + 1 then (1) and (2) becomes respectively:
Cij =i (6j+1) +]j ®3)
Cij = j(6i +1) +1i 4
From (3) and (4) we get respectively:
(Cij-j)mod (6 +1) =0 (5)
(Cij — i) mod (6i+1) =0 (6)
Similarly for matrix D,
Dij =P x AP(Q) + 5 X AP(P) + 4 O
Dij=QxAP(P) +5x AP(Q) + 4 (8)
To express Dij in terms of i and j only, and since P = 6j + 1 and Q = 6j + 1 then (7) and (8) becomes respectively
Dij = i (6j+5) +5j + 4 9)
Dij = j(6i +5) + 5i + 4 (10)
From (9) and (10) we get respectively:
(Dij —5j - 4) mod (6j +5) =0 (11)
(Dij — 5i - 4) mod (6i +5) =0 (12)

Now, based on equations (5), (6), (11) and (12) the prime factors for absolute position is Cij / Dij are the primes

with absolute positions i and j.

Although each pair of equations is identical, they behave differently when used to search the matrix space of C/D.
Equations (5) and (11) on variable value of j will search the space vertically, while equation (6) and (12) on variable value

of i will search the space horizontally.
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3. AFACTORIZATION ALGORITHM FOR COMPOSITE NUMBERS IN R1

Given N = p x g in R1, we can use (5), (6), (11) and (12) to scan matrices C and D vertically or/and horizontally

to verify whether AP (N) = Cij/Dij is within the matrixes space or not.

To make the search finite, we have to determine the search space limits for each matrix, that is to say, we have to
specify an initial value for j and/or i to represent the upper limit, and a lower limit. To determine a suitable initial value for

j and/or i, we state the following theorem.
Theorem (2)

Let N € R1 be a large composite number with AP (N) =Cij /Dij. The suitable initial value for j or i, is sqrt(Cij/Dij
/6).

Proof

From (5) or (6) we have Cij =i (6j+1) + j. This implies that Cij > 6ij. If we set i=j, then this means Cij > 6 j2 &>
Cij /16 > j2 > j < sqrt (Cij /6). Thus if we select j= sqrt (Cij /6), then one of the two factors of N will be generated by a j
value greater than the selected initial value while the second factor is generated by a j value less than the initial value.

The same result follows if we use equation (11) or (12) for Dij.

Now, since the square root of any composite integer number leans towards the smallest factor, it is always more
efficient to locate the smallest factor if searching is started from the square root of that number. Therefore the proposed

algorithm scans C and D matrix space backwards rather than forwards.

Based on the above stated theory, figure 1 shows the developed algorithm which searches vertically and

backwards the matrices C and D simultaneously.

Choose a number, N=p x q in R1, you wish to factor

Letn =N div 6 // n represent Cij /Dij

Is (nmod 5 =0)

YES: N is composite, the two factors are; f1= 5 and f2= N/f1, End.

NO: continue to next step

Let j= sqrt(n/6)

Let PrimalityFlag= 1.

While (j =0)

Is((n-j)mod (6% +1))=0

YES: N is composite, the two factors are; f1=j * 6 +1 and £2=N/f1. PrimalityFlag=0, End.
Is ((n- 5j - 4)mod (6§ +5)) =0

YES: N is composite, the two factors are; f1=j * 6 +5 and £2=N/fl. PrimalityFlag=0, End.
Decrement j

is Prime.

Figure 1: Deterministic Factorization Algorithm
If the value of the smallest factor of N is close to the initial value of j, the above algorithm will have a high
performance. But if the value of the smallest factor is close to the value 1 the algorithms will achieve bad performance

since searching is start from j down to 1.
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To solve this problem we propose that the searching space [1, j] has to be divided into two halves [1, j/2] and [j/2,
j] and to search the two halves forewords and backwards simultaneously starting from j/2. Figure 2 shows how this will

work, and Figure 3 shows the refined algorithm.

Forward middle backward

[
» %

1 | i/
Last value initial value=sqrt (n/6)

o »
- »

| |

Figure 2: Parallel Searching in the Search Space

Choose a number, N in RB1, vou wish to factor

Letn =N div 6/ nrepresent Cij /Dij

Is (nmod 5 =10)

YES: N is compaosite, the two factors are; f1=5 and 2= N/f1.

NQO: continue to next step

Letj= sqrt(n/6)

Letjl =1

Let PrimalityFlag=1.

While (j =j1)

Is((n-j)mod (6% +1))=0

YES: N is composite, the two factors are: f1= * 6 +1 and 2= N/f1. PrimalitvFlag=0. End.
Is((n—jl)mod (6%1 +1))=0

YES: N is composite, the two factors are; f1=51 * 6 +1 and £2=N/f1. PrimalityFlag=0. End.
Is (n- 5% - 4)mod (6% +5)) =0

YES: N is composite, the two factors are: f15 * 6 +5 and £2=N/f1. PrimalityFlag=0. End.
Is ((n- 5%1 - ) mod (6i*1 +5)) =0

YES: N is composite, the two factors are; f151 * 6 +5 and £2=N/f1. PrimalityFlag=0, End.
Decrement j

increasej 1

N is Prime.

Figure 3: The Refined Developed Algorithm
4, TESTING AND RESULTS

The developed algorithm is tested against one of the best known factoring algorithm Pollard-Roh. The developed
algorithm, its improved version and Pollard-Roh algorithm are tested using three different scenarios, first when the two
factors p and q are equal, second when the two factors p and q are too far from each other and third time when the

composite number N is prime.

All tests were run on an Intel(R) Core(TM) i3 2.40 GHz processor with 4GB of RAM. Windows 7 Ultimate
Service Pack 1 was the host operating system. Version 6.2.2 of the Java Runtime Environment was used. Programs were
executed using a command line invocation of the Java client virtual machine. Java Development Kit version 7.0.9 was used

for compiling codes. Tables (1 - 5) show the testing results, where time is measured in seconds.
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Table 1: Comparison When Factors are Equal and belong to R1

Pollard
Length . Developed | Improved
in Bit N Factors: pand q Alg Alg rho
16 10609 }gz 0008 0006 033
32 7420616449 g:ii; .004 001 .050
1067328908494200016 3267000013
o4 9 3267000013 o3 003 103
1132075226011584461 More
10639902377426140939
128 0878782010589180172 10639902377426140939 007 009 than 24
1 hours
4976075420923246673
22 2
T987782475534088654 ;;gg;§é§§;164“731608683891807 More
2 2. 2
236 i;;f;;gji?gg;g;gigg 22307118641642731608683891807 008 013 ﬁiﬁ;f
U 9 - 5788680053
1325957649039914677
4870159393916342368 11515023443484232340240973012
ié;;gi;iga;;g;gig;g 22629300872649584295124552992 More
" 34484683781410349413 016
512 6707085434613286019 5 San2409 5 010 than 96
$581980236717947475 11515023443484232340240973012 hours
anca 22629300872649584295124552992
6284833378233478473 34484683781410349413
4655216327746749444
569
6391062478810970306
6987778668792026297
2;3?;:3???;22;?22;3 79944120977161105481272117333
565610458031 5443980 31600522933776757046707649963
5024716098484705814 67396268620083843295023910398
40;11“8371956197131 10707283695998163146464827207
— 2 22
8077490632492996936 23325?5?360131196843154““4748 More
2 2 2 22 o
1024 g;;f;ggi;gii;zgé;;; 79944120977161105481272117333 046 049 d}i;ig4
53757304953:4;00133 31600522933776757046707649963
50384736176;7640481 67396268620083843295023910398
00349;361;79;711“50 10707283695998163146464827207
- 2 22
6140796659727273294 ggf:f?é?;SOISI196843154““4748
5487502390549410187 -
8233432228168704501
8361

Table 2: Comparison When Factors are Too Far and belong to R1

Length
in Bit

N

Factors

Developed
Alg

Improved

Alg

Pollard

16

19933

31
643

002

001

32

3672285319

109
336590691

016

003

6405689219373700062
1

7
9150984599105285803

1351

5535992206679418465
4286697174480454858
9

7

829221227

79085602952563120934695281677

More than
24 hours

4227087677152783041

8228558317733439153

7970015566310661722

3950681293217708680
841

67

1204198406234457923

63090860853026612564520236295
12453605044328590541950174961

More than
48 hours

057

512

7994412097716110548
1272117333316005229
3377675704670764996
3673962686200838432
9502391039810707283
6959981631464648272
0706826018360181196
8431542247483822110
13

13

61495477674739311908670859487

16615786872135966959005884587

44150975861602956380787623383

15928679766152433189588328620

§2173860277062459110118634421
83247001

More than
96 hours

014

106

1024

7244745153529326664
8075334003517752694
8150324241419014532
4170149403724031970
5318901834653360553
7790117919865810668
9091299815727422469
4383550187240714909
1245391486769744339
8184239476965785783
3792517357759285011
8811678525949996522
9428419776968442410
3922632894651110383
7583786275932284599
0154909133353333326
3439

7
10349635933613323806867904857
64539324211643320344884306474
88144991481771885293312716906
64765793397001684569511580984
41614259389631781348336431246
29592727320770212395677762831
20342109951122547684645336822
75500169730969322785709318489
TT7425385263463005603761278073
01483394054089656175494271649

870190504761894777

More than
384 hours

046

248

123
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Table 3: Comparison When the Factors are the Same and belong to R5

Length N Factors Developed | Improved ]’a:.lh:'rd
in Bit Alg Alg
16 10201 101 0006 10006 026
101
32 7420271881 86141 002 005 035
86141
64 106732897187400121 3267000011 I004 003 069
3267000011
128 1132075226011584460 10639902377426140937 009 010 More
6622821059618723796 10639902377426140937 than 24
9 hours
256 | 4976075420923246673 | 2230711864164273 1608683891807 008 008 More
7987782475534088653 5788680051 than 48
5323478982148841822 | 22307118641642731608683891807 hours
9797365987284536260 5788680051
1
512 | 1325937649039914677 | 11515023443484232340240973012 015 016 More
4870159396916742868 | 22629300872649584295124552992 than 96
4177647352555233330 34484683781410349411 hours
1659829760535904903 | 11515023443484232340240973012
6246484496873916725 | 22629300872649584295124552992
9484891031827430272 34484683781410349411
1378852006428496353
T717277592621108046
921
1024 6391062478810970306 | 79944120977161105481272117 046 048 More
6987778668792026297 | 33331600522933776757046707 than 384
9790491303508763876 | 64906367396268620083843205 hours
6301770713333616770 | 2391039810707283695995163
636104380313443980 | 11 546482720706826018360181
3924216098484T05814 | * ) §6543154224748382211017
4032128371936 197131 | 20044120077161105481272117
8077490632492996936 < o
6853473443527327000 | 33331600522933776757046707
1511502797396567870 | 64996367396268620083843295
3638673467137369583 | 02391039810707283695998163
6491465105194006943 | 14646482720706826018360181
6854857972203283959 | 106843154224748382211017
2662397394468687363
6659229349815002939
9496170538269351617
4289

Table 4: Comparison

When Factors are Too Far and belong to R5

Length
in Bit Bl

Pollard

Developed Improved rho

Alg Alg

Factors: pand q

16 18651

71

2
251 20009 001 026

32 3588471073

11

2
326224643 046 oot 0

291814300586537338

64 51

39749

2
734142495626399 834 065 237

320525006761579726
128 662809720356346071
063

461 More than
69528201032880634850934863417 012 050

2.
8624883 24 hours

386428403330381178

704023366067828750

256 814321374536459376

210187389544110528
57353

11
35129854848216470791274851460 | More than
71170461948376132149630692819 48 hours

8853509491913896123

016 057

727150860362242384
051687694729780067
352468087459065195
698440473108158059
512 581532385978350856
313316794089835705
607038516875395490
419148650358167494
2402246947

14¢
48802071165251166775281053337
56913203707839513148088561734 More than
49981951783932605055292602920 96 hours 016 098
03779417234502673537289062987
70975808660531198995692399290
2028503

586430859437460846
406355903726327304
453556703098198875
941677985205138553
538602445538062393
538675495353962706
604173932864451992
199051716074441280
371596769393000729
037491786699047488
396011903796041885
519180343885877141
658667862876468520
304028869548943164
378538438027905098
275020830773751354
525301061334717788

1024

849

857
68428338324091113933063699384
63562479038001203012822356378
97298955820949286583950452814
92828316860601395881750778755
29340163269533858997368042944 | More than
82609999291716136566501501399 | 384 hours
12192344525543033377116163264
91760628671431256334455968127
42478446755599700308493043684
98005262342476176286318711146

4762031895820057

052 256
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Table 5: Comparison When Number is Prime

Lengtll Number-(Z) Primeo Developed- | Improved- | Pollard- |
in-Bito Algn Algn rhon
160 466630 002z .002a 024z
320 22121887 003z 003z 024z
640 10639902377426140939u 467u 4630 029
1280 2230711864164273160868389180757886800531 79561 79551 039
2560 11515023443484232340240973012226293008726495842951 | More-than- | More-than- 04911
24552992344846837814103494130 98 hoursc 98 -hoursa )
79944120977161105481272117333316005229337767570467
s120 07649963673962686200838432950239103981070728369599 | More-than- | Morethan- 08301
- 81631464648272070682601836018119684315422474838221 192-hoursz | 192 -hourso :
1019
14812672559172489972249103890864740981063211050267
18280536738104320663868363315567751535414107598130
31826382848509744213883064825096771209214268697416 Morethan- | Morethan-

10240 | 02198110584411236874108609993237871487304231419709 384 hourstt | 384 hoursc 173
01448782468211130281038117941326068287653826533159
84134114355125510400361867987499256156303506019194

8678885831

Form tables (1-5) it is clear that the improved version of the algorithm is highly efficient and out performs
Pollard-Rho when the one of the factors is small or when the two factors are equal, but the algorithm is inefficient for
primality testing.

For the complexity of the developed algorithms; the worst case of the algorithms is when N is prime, in such case
the while loop is executed (((N/6) *) /6) times. The best case is when N is composite with factors p and g are same, in such
case the while loop executed only once O (1). The average case is when N is composite and p and g are not same, in this

case the while loop executed in average O (((N/6) *) /24) in improved algorithm or O ((N/6) *) /12) in deterministic
backward algorithm

5. CONCLUSIONS

Factorization problem is an open problem that motivates scientists to develop fast algorithms. The developed
algorithm utilizes a new approach for developing primality testing and factorization algorithms that gives new sights to the
factorization and primality testing problems.

The positive features of the developed theory and algorithms are simplicity and ease of implementation.
The parallel characteristic of the developed algorithms and its dependency on a matrix search algorithm makes it
competent to achieve a better performance on refinements.
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