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ABSTRACT 

The factorization of integers of the form N = p x q, where p and q are primes is of special interest in cryptography 

and algebra. It is well known facts that a prime number P is in one o two series; P mod 6 = ±1, and each prime P generate a 

series of composite numbers of the form N mod 6 = ±1. 

Based on the concept of Integer Absolute Position, which define the position of an integer N, where N mod               

6 = ±1, within its series as AP (N) = N div 6, we develop a fast factorization algorithm for composite integers of the form 

N = p x q, where p and q are primes and N mod 6= + 1. 

In comparing the developed algorithm with the well known factorization algorithm Pollard Rho, the developed 

algorithm out performs Pollard Rho under certain conditions, namely, when the value of the smallest factor p/q is small or 

when the values of p and q are relatively close.  
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1. INTRODUCTION 

Fast factoring algorithms are important for ensuring that sensitive data is protected in electronic transmissions [1]. 

Also factoring is an important process in algebra which is used to simplify expressions, simplify fractions, and solve 

equations.  

Today, factoring algorithms are tending to be of great interest in cryptography due to the fact that some encryption 

algorithms get their cryptographic strength from the difficulty of factoring large Integers, such as the RSA encryption 

algorithm. 

If it were possible to factor products of large prime numbers quickly, RSA algorithm would be insecure,                   

and consequently the protocols that relies on the security of the RSA algorithm such as SSL [2], which is used to secure 

TCP/IP connections over the web.  

There are many proposed factorization algorithm that attempt to improve factorization performance. In fact, most 

of the algorithms that exist today run on the order of en, where e is Euler’s number [3]. Generally speaking, the run time of 

factoring algorithms is either depends on the size of N, the number being factored or on the size of factor found, F [4]. 

Examples of algorithms that their run time depends on the size of N includes; Lehman’s algorithm [5] which has a 

rigorous worst-case run time bound O(N 1/3), Shanks’s SQUFOF algorithm [6], which has expected run time O(N1/4). 

Shanks’s Class Group algorithm [7,8] which has run time O(N 1/5+€) on the assumption of the Generalized Riemann 

Hypothesis, the Continued Fraction algorithm [9] and the Multiple Polynomial Quadratic Sieve algorithm [4,7,14], which 
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under plausible assumptions have expected run time O(exp(c(log N log log N) 1/2)), where c is a constant, and the fastest 

known general-purpose factoring algorithm, the General Number Field Sieve (GNFS), which in asymptotic notation takes 

S = O (exp((64/9 n) 1/3 (log n) 2/3)) steps to factor an integer with n decimal digits. The running time of the algorithm is 

bounded below by functions polynomial in n and bounded above by functions exponential in n .  

On the other hand, algorithms that their run time depends mainly on the size of the factor found f, includes; the 

trial division algorithm, which has run time O(f · (log N)2). The Pollard rho algorithm [10], which has expected run time 

O(f1/2·(logN)2). Lenstra’s “Elliptic Curve Method” (ECM) [11, 12] which has expected run time O(exp(c(log f log log f) 

½. log(N)2 ), where c is a constant.  

This paper contributes to the efforts of developing fast factoring algorithms. The paper proposes a deterministic 

factoring algorithms for integers that takes the RSA modulus form, that is, integers of the form N=p X q, where p and q are 

primes, and N mod 6 = +1. 

The proposed algorithm is developed using the concept of integer absolute position defined in [13], and its Java 

implementation is compared to some known fast factorization algorithms. The experimental tests show that the developed 

algorithm is competent when p and q are relatively closed. 

The rest of this paper is organized as follows; in section 2 a preliminary theory about prime series and the nature 

of the composite numbers in the form N mod 6 =+1 is stated and the composite absolute position matrices of composites of 

the form N mod 6=+1 are developed. In section 3 the proposed algorithm is presented. Section 4 is dedicated for 

experimental testing and results. Conclusions are given in section 5. 

2. PRELIMINARY THEORY 

It is a known fact that a prime number P satisfies either P mod 6 = 1 or P mod 6 = -1, we call the sets {N: N mod 6 

= - 1, N ϵ Z+} and {N: N mod 6 = 1, N ϵ Z+}, R5 and R1 prime series respectively. Thus R5 = {5, 11, 17, 23, 29, 35, 41, 

47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107,….} and R1 = {1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 

97,……}. 

A composite number N is in R1 if it is a result of multiplying two integers that both belongs either to R1 or R5, 

i.e. N = p x q, ϵ R, when either p and q ϵ R1 or ϵ R5. We express this fact in the following theorem. 

Theorem (1) 

 For any integer N ϵ R1, then N is either a prime or composite number.  

 If N is a composite number that has exactly two prime factors, i.e. N= p x q, then both p, q are ϵ R1 or both p and 

q ϵ R5. 

 If N is a composite number that has more than two prime factors, i.e. N= p1 x p2 x …pi, i≥3, then zero or an even 

number of pi's are ϵ R5, and the others ϵ R1. 

Proof 

(a) Suppose N ϵ R1 is a composite number that has two factors, then  

N = pq → pq (mod 6) =1 → (((p mod 6) (q mod 6)) mod 6) =1  
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Since (1) holds only when both (p mod 6) = 1 and (q mod 6) = 1, therefore the two factor p and q ϵ R1, or when 

both (p mod 6) =5 and (q mod 6) = 5. Therefore the two factor p and q ϵ R5. 

(b) Proof is directly follows from (a). 

Based on theorem 1 and prime series definition, N=p x q, where p and q are primes is an entry in one of two 

labeled matrices A and B, shown below. 

Matrix A: Space of Composite Numbers in R1 that results from R1*R1 

R1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 R1 

 

49 91 133 175 217 259 301  …      7 

91 169 247 325 403 481 559  …      13 

133 247 361 475 589 703 817  …      19 

175 325 475 625 775 925 1075  …      25 

217 403 589 775 961 1147 1333  …      31 

: : : : : : :  :      : 

 

Matrix B: Space of Composite Numbers in R1 that Results from R5*R5 

R5 5 11 17 23 29 35 41 47 53 59 65 71 77 83 R5 

 

25 55 85 115 145 175 205 …       5 

55 121 187 253 319 385 451 …       11 

85 187 289 391 493 595 697 …       17 

115 253 391 529 667 805 943 …       23 

145 319 493 667 841 1015 1189 …       29 

: : : : : : : :       : 

 

The position of each number matrix A or B is called Absolute Position (AP), and for a given integer N,                     

this position is given by: AP (N) = N div 6 [13]. Using absolute position concept, matrix C and D, generated from matrices 

A and B respectively, defines the Absolute Positions for composite numbers in R1. 

Matrix C: Composite Number’s Absolute Positions in R1 that result from R1 x R1 

P 7 13 19 25 31 37 43 49 
Q's 

AP 
Q P's

AP 
1 2 3 4 5 6 7 . 

 

8 15 22 29 36 43 50 . 1 7 

15 28 41 54 67 80 93 . 2 13 

22 41 60 79 98 117 136 . 3 19 

29 54 79 104 129 154 179 . 4 25 

36 67 98 129 160 191 222 . 5 31 

43 80 117 154 191 228 265 . 6 37 

50 93 136 179 222 265 308 . 7 43 

 : : : : : : : AP : 

 

Matrix D: Composite Number’s Absolute Positions in R1 that Result from R5 x R5 

P 11 17 23 29 35 41 . 
Q's 

AP 
Q P's

AP 
1 2 3 4 5 6 . 

 

20 31 42 53 64 75 . 1 11 

31 48 65 82 99 116 . 2 17 

42 65 88 111 134 157 . 3 23 

53 82 111 140 169 198 . 4 29 

: : : : : : : : : 

 

http://www.tjprc.org/


120                                                                                                                                                Noureldien A. Noureldien & Ebtisam Abaker 

 

Impact Factor (JCC): 6.8785                                                                                        Index Copernicus Value (ICV): 3.0 

If we eliminate in C and D the columns and rows that are generated by composite labels such as 25, 35, 49, 55, 

85, 121,…etc, (shaded in matrixes C and D), then the remaining space contains absolute positions of composites that are 

generated by exactly two prime factors, P and Q. 

For matrix C, the position of any entry in the matrix space can be denoted by Cij , where i and j denotes absolute 

positions of the prime factors P and Q that compose Cij; For example C63 is the absolute position of a composite whose 

factors have absolute positions 6 and 3.(since Cij = Cji there is no meaning to differentiate between row label i and column 

label j). 

Now, if Cij is an AP in matrix space which is generated column wise by the prime P and row wise by the prime Q, 

then Cij satisfies the following two equations: 

Cij = P x AP(Q) + AP(P) = P x i + j              (1) 

Cij = Q x AP(P) + AP(Q) = Q x j + i               (2) 

To express Cij in terms of i and j only, and since P = 6j + 1 and Q = 6i + 1 then (1) and (2) becomes respectively:  

Cij = i (6j+1) + j                 (3) 

Cij = j(6i +1) + i                 (4) 

From (3) and (4) we get respectively: 

(Cij - j) mod (6j + 1) = 0                (5) 

(Cij – i) mod (6i+1) = 0                (6) 

Similarly for matrix D,  

Dij = P x AP(Q) + 5 x AP(P) + 4               (7) 

Dij = Q x AP(P) + 5 x AP(Q) + 4               (8) 

To express Dij in terms of i and j only, and since P = 6j + 1 and Q = 6j + 1 then (7) and (8) becomes respectively  

Dij = i (6j+5) +5j + 4                (9) 

Dij = j(6i +5) + 5i + 4              (10) 

From (9) and (10) we get respectively: 

(Dij – 5j - 4) mod (6j + 5) = 0                    (11)  

(Dij – 5i - 4) mod (6i + 5) = 0              (12)  

Now, based on equations (5), (6), (11) and (12) the prime factors for absolute position is Cij / Dij are the primes 

with absolute positions i and j.  

Although each pair of equations is identical, they behave differently when used to search the matrix space of C/D. 

Equations (5) and (11) on variable value of j will search the space vertically, while equation (6) and (12) on variable value 

of i will search the space horizontally. 
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3. A FACTORIZATION ALGORITHM FOR COMPOSITE NUMBERS IN R1 

Given N = p x q in R1, we can use (5), (6), (11) and (12) to scan matrices C and D vertically or/and horizontally 

to verify whether AP (N) = Cij/Dij is within the matrixes space or not. 

To make the search finite, we have to determine the search space limits for each matrix, that is to say, we have to 

specify an initial value for j and/or i to represent the upper limit, and a lower limit. To determine a suitable initial value for 

j and/or i, we state the following theorem. 

Theorem (2) 

Let N ϵ R1 be a large composite number with AP (N) =Cij /Dij. The suitable initial value for j or i, is sqrt(Cij/Dij 

/6). 

Proof 

From (5) or (6) we have Cij = i (6j+1) + j. This implies that Cij > 6ij. If we set i=j, then this means Cij > 6 j2  

Cij /6 > j2  j < sqrt (Cij /6). Thus if we select j= sqrt (Cij /6), then one of the two factors of N will be generated by a j 

value greater than the selected initial value while the second factor is generated by a j value less than the initial value.              

The same result follows if we use equation (11) or (12) for Dij. 

Now, since the square root of any composite integer number leans towards the smallest factor, it is always more 

efficient to locate the smallest factor if searching is started from the square root of that number. Therefore the proposed 

algorithm scans C and D matrix space backwards rather than forwards. 

Based on the above stated theory, figure 1 shows the developed algorithm which searches vertically and 

backwards the matrices C and D simultaneously.  

 

Figure 1: Deterministic Factorization Algorithm 

If the value of the smallest factor of N is close to the initial value of j, the above algorithm will have a high 

performance. But if the value of the smallest factor is close to the value 1 the algorithms will achieve bad performance 

since searching is start from j down to 1.  
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To solve this problem we propose that the searching space [1, j] has to be divided into two halves [1, j/2] and [j/2, 

j] and to search the two halves forewords and backwards simultaneously starting from j/2. Figure 2 shows how this will 

work, and Figure 3 shows the refined algorithm.  

 

Figure 2: Parallel Searching in the Search Space 

 

Figure 3: The Refined Developed Algorithm 

4. TESTING AND RESULTS 

The developed algorithm is tested against one of the best known factoring algorithm Pollard-Roh. The developed 

algorithm, its improved version and Pollard-Roh algorithm are tested using three different scenarios, first when the two 

factors p and q are equal, second when the two factors p and q are too far from each other and third time when the 

composite number N is prime.  

All tests were run on an Intel(R) Core(TM) i3 2.40 GHz processor with 4GB of RAM. Windows 7 Ultimate 

Service Pack 1 was the host operating system. Version 6.2.2 of the Java Runtime Environment was used. Programs were 

executed using a command line invocation of the Java client virtual machine. Java Development Kit version 7.0.9 was used 

for compiling codes. Tables (1 - 5) show the testing results, where time is measured in seconds. 
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Table 1: Comparison When Factors are Equal and belong to R1 

 

 

Table 2: Comparison When Factors are Too Far and belong to R1 
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Table 3: Comparison When the Factors are the Same and belong to R5 

 

 

Table 4: Comparison When Factors are Too Far and belong to R5 
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Table 5: Comparison When Number is Prime 

 

 

Form tables (1-5) it is clear that the improved version of the algorithm is highly efficient and out performs 

Pollard-Rho when the one of the factors is small or when the two factors are equal, but the algorithm is inefficient for 

primality testing. 

For the complexity of the developed algorithms; the worst case of the algorithms is when N is prime, in such case 

the while loop is executed (((N/6) 
½
) /6) times. The best case is when N is composite with factors p and q are same, in such 

case the while loop executed only once O (1). The average case is when N is composite and p and q are not same, in this 

case the while loop executed in average O (((N/6) 
½
) /24) in improved algorithm or O ((N/6) 

½
) /12) in deterministic 

backward algorithm 

5. CONCLUSIONS 

Factorization problem is an open problem that motivates scientists to develop fast algorithms. The developed 

algorithm utilizes a new approach for developing primality testing and factorization algorithms that gives new sights to the 

factorization and primality testing problems. 

The positive features of the developed theory and algorithms are simplicity and ease of implementation.                   

The parallel characteristic of the developed algorithms and its dependency on a matrix search algorithm makes it 

competent to achieve a better performance on refinements.  
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