
 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 1 of 7

Processes
 (Interprocess Communication)

Contents of Lecture:
 Interprocess Communication
 Shared-Memory Systems
 Message-Passing Systems

References for This Lecture:
 Abraham Silberschatz, Peter Bear Galvin and Greg Gagne, Operating System Concepts,

9th Edition, Chapter 3

Interprocess Communication
 Processes executing concurrently in the operating system may be either independent

processes or cooperating processes.

 A process is independent: if it cannot affect or be affected by the other processes
executing in the system.
 Any process that does not share data with any other process is independent.

 A process is cooperating: if it can affect or be affected by the other processes
executing in the system.
 Clearly, any process that shares data with other processes is a cooperating

process.

 There are several reasons for providing an environment that allows process cooperation:
1. Information sharing: Since several users may be interested in the same piece of

information (for instance, a shared file), we must provide an environment to allow
concurrent access to such information.

2. Computation speedup: If we want a particular task to run faster, we must break it into
subtasks, each of which will be executing in parallel with the others.

Notice that
such a speedup can be achieved only if the computer has multiple processing cores.

3. Modularity: We may want to construct the system in a modular fashion, dividing the

system functions into separate processes or threads.
4. Convenience: Even an individual user may work on many tasks at the same time. For

instance, a user may be editing, listening to music, and compiling in parallel.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 2 of 7

 Cooperating processes require an interprocess communication (IPC) mechanism that will

allow them to exchange data and information.

 There are two fundamental models of interprocess communication:
 Shared memory
 Message passing

 In the shared-memory model:

 A region of memory that is shared by cooperating processes is established. Processes
can then exchange information by reading and writing data to the shared region.

 In the message-passing model:

 Communication takes place by means of messages exchanged between the
cooperating processes.

 Both of the models just mentioned are common in operating systems, and many systems

implement both.

 The two communications models are contrasted in next figure (Figure 3.12).

Figure 3.12 Communications models. (a) Message passing. (b) Shared memory.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 3 of 7

Shared-Memory Systems
 Interprocess communication using shared memory requires communicating processes to

establish a region of shared memory. Typically, a shared-memory region resides in the
address space of the process creating the shared-memory segment.

 Other processes that wish to communicate using this shared-memory segment must attach it
to their address space. Recall that, normally, the operating system tries to prevent one process
from accessing another process’s memory.

 Shared memory requires that two or more processes agree to remove this restriction. They
can then exchange information by reading and writing data in the shared areas.

 The form of the data and the location are determined by these processes and are not under the
operating system’s control.

 The processes are also responsible for ensuring that they are not writing to the same location
simultaneously.

producer–consumer problem
 To illustrate the concept of cooperating processes, let’s consider the producer–consumer

problem, which is a common paradigm for cooperating processes.
 A producer process produces information that is consumed by a consumer process.

 Examples of producer–consumer problem

 A compiler may produce assembly code that is consumed by an assembler. The
assembler, in turn, may produce object modules that are consumed by the loader.

 The producer–consumer problem also provides a useful metaphor for the client–
server paradigm. We generally think of a server as a producer and a client as a
consumer.
 For example, a web server produces (that is, provides) HTML files and

images, which are consumed (that is, read) by the client web browser
requesting the resource.

Solution to the producer–consumer problem
 One solution to the producer–consumer problem uses shared memory.

 To allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by the
consumer.

 This buffer will reside in a region of memory that is shared by the producer and
consumer processes.

 A producer can produce one item while the consumer is consuming another item.
 The producer and consumer must be synchronized, so that the consumer does not try

to consume an item that has not yet been produced.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 4 of 7

 Two types of buffers can be used:

 The unbounded buffer: places no practical limit on the size of the buffer. The
consumer may have to wait for new items, but the producer can always produce new
items.

 The bounded buffer: assumes a fixed buffer size. In this case, the consumer must
wait if the buffer is empty, and the producer must wait if the buffer is full.

 Let’s look more closely at how the bounded buffer illustrates interprocess communication

using shared memory. The following variables reside in a region of memory shared by the
producer and consumer processes:

#define BUFFER SIZE 10
typedef struct {

...
}item;

item buffer[BUFFER SIZE];
int in = 0;
int out = 0;

 Where:
 The shared buffer is implemented as a circular array with two logical pointers: in

and out.
 The variable in points to the next free position in the buffer.
 out points to the first full position in the buffer.
 The buffer is empty when in == out.
 The buffer is full when ((in + 1) % BUFFER SIZE) == out.

 The code for the producer process is shown in next figure (Figure 3.13).

Figure 3.13 The producer process using shared memory.

 The producer process has a local variable next_produced in which the new item to be
produced is stored.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 5 of 7

 The code for the consumer process is shown in next figure (Figure 3.14).

Figure 3.14 The consumer process using shared memory.

 The consumer process has a local variable next_consumed in which the item to be consumed
is stored

Message-Passing Systems
 Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space.

 It is particularly useful in a distributed environment, where the communicating processes
may reside on different computers connected by a network.
 For example, an Internet chat program could be designed so that chat participants

communicate with one another by exchanging messages.

 A message-passing facility provides at least two operations:
send(message)
receive(message)

 Messages sent by a process can be either fixed or variable in size.

 If processes P and Q want to communicate:
 They must Exchange messages via send/receive operations from each other.
 They need to establish a communication link must exist between them. This link can

be implemented in a variety of ways:
 Physical implementation such as:

o shared memory
o hardware bus
o network

 Logical implementation:
o Direct or indirect communication
o Synchronous or asynchronous communication
o Automatic or explicit buffering

We look at issues related to each of these features next.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 6 of 7

Related issues
1. Naming
 Processes that want to communicate must have a way to refer to each other.
 They can use either direct or indirect communication.

Direct communication:
 Each process that wants to communicate must explicitly name the recipient or sender of the

communication.

 In this scheme, the send() and receive() primitives are defined as:
 send(P, message) — Send a message to process P.
 receive(Q, message) — Receive a message from process Q.

 A communication link in this scheme has the following properties:

 A link is established automatically between every pair of processes that want to
communicate. The processes need to know only each other’s identity to
communicate.

 A link is associated with exactly two processes.
 Between each pair of processes, there exists exactly one link.

Indirect communication:
 The messages are sent to and received from mailboxes, or ports. Each mailbox has a unique

identification.

 In this scheme, two processes can communicate only if they have a shared mailbox. The
send() and receive() primitives are defined as follows:
 send(A, message)—Send a message to mailbox A.
 receive(A, message)—Receive a message from mailbox A.

 A communication link has the following properties:

 A link is established between a pair of processes only if both members of the pair
have a shared mailbox.

 A link may be associated with more than two processes.
 Between each pair of communicating processes, a number of different links may

exist, with each link corresponding to one mailbox.

 Operating System Concepts أ.إبتسام أبكر
 lecture No (4) sem8 علوم حاسوب

Page 7 of 7

2. Synchronization
 Communication between processes takes place through calls to send() and receive()

primitives. There are different design options for implementing each primitive. Message
passing may be either blocking (synchronous) or nonblocking (asynchronous) .

 Blocking send: The sending process is blocked until the message is received by the

receiving process or by the mailbox.
 Nonblocking send: The sending process sends the message and resumes operation.
 Blocking receive: The receiver blocks until a message is available.
 Nonblocking receive: The receiver retrieves either a valid message or a null.

 Different combinations of send() and receive() are possible.
 When both send() and receive() are blocking, we have a rendezvous between the sender and

the receiver.

 The solution to the producer–consumer problem becomes trivial when we use blocking
send() and receive() statements. The producer merely invokes the blocking send() call and
waits until the message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive(), it blocks until a message is available. This is illustrated in next
figures (Figures 3.15 and 3.16).

Figure 3.15 The producer process using message passing.

Figure 3.16 The consumer process using message passing.

